On the Laplace transform of distributions of the form T(P ± io, λ)

被引:0
作者
Trione, SE
机构
[1] 1083 Buenos Aires
关键词
Laplace transforms; generalized functions; ultrahyperbolic operators;
D O I
10.1080/1065246031000074344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(z, lambda), z is an element of C, be an entire function of the variables z, lambda,f(z, lambda) = Sigma(nu=0)(infinity) alpha(nu)(lambda)z(nu). Let us consider the family of distributions of the form [1], p. 285, [GRAPHICS] In this paper we generalize the concept of the classic one-dimensional Laplace transform to certain distributions (P +/- io)(lambda) (an important contribution of Gelfand, cf. [1], p. 274). We define the causal, anticausal distributions R-alpha (P +/- io,n) (cf. [3.1], p. 4). This distribution is an elementary solution of the homogeneous ultrahyperbolic operator iterated k -times. We observe that the distributional function R-alpha(P +/- io, n) is a (causal, anticausal) analogue of the kernel due to A. P. Calderon, Aronszjan-Smith and L. Schwartz (cf. M.I.T. [1958], Ann. Inst. Fourier [1961] and Hermann, Paris [1960], respectively).
引用
收藏
页码:257 / 261
页数:5
相关论文
共 6 条
[1]  
CERUTTI RA, COMMUNICATION
[2]  
Dominguez A. G., 1979, ADV MATH, V31, P51
[3]  
Gelfand I, 1964, GEN FUNCTIONS, V1
[4]  
Schwartz L., 1950, Theorie des distributions
[5]  
TRIONE SE, 1974, RENDICONTI CLASS S 8, P143
[6]  
TRIONE SL, 1980, CURSOS MATEMATICA, V3