STABLY POSITIVE LYAPUNOV EXPONENTS FOR SYMPLECTIC LINEAR COCYCLES OVER PARTIALLY HYPERBOLIC DIFFEOMORPHISMS

被引:6
作者
Poletti, Mauricio [1 ]
机构
[1] Univ Paris 13, LAGA, 99 Av Jean Baptiste Clement, F-93430 Villetaneus, France
关键词
Lyapunov exponents; partially hyperbolic diffeomorphism; linear cocyles; symplectic cocycles; Anosov flows;
D O I
10.3934/dcds.2018228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Sp(2d, R) cocycles over two classes of partially hyperbolic diffeomorphisms: having compact center leaves and time one maps of Anosov flows. We prove that the Lyapunov exponents are non-zero in an open and dense set in the Holder topology.
引用
收藏
页码:5163 / 5188
页数:26
相关论文
共 21 条
[1]  
[Anonymous], 1949, AM MATH SOC
[2]  
Araujo Vitor, 2012, 3 DIMENSIONAL FLOWS, V114
[3]  
Avila A., 2008, PREPRINT
[4]   Monotonic cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
INVENTIONES MATHEMATICAE, 2015, 202 (01) :271-331
[5]   Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows [J].
Avila, Artur ;
Viana, Marcelo ;
Wilkinson, Amie .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (06) :1435-1462
[6]  
Avila A, 2013, ASTERISQUE, P13
[7]   DENSITY OF POSITIVE LYAPUNOV EXPONENTS FOR SL(2, R)-COCYCLES [J].
Avila, Artur .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (04) :999-1014
[8]   Extremal Lyapunov exponents: an invariance principle and applications [J].
Avila, Artur ;
Viana, Marcelo .
INVENTIONES MATHEMATICAE, 2010, 181 (01) :115-178
[9]  
Backes L., ARXIV150708978V2
[10]   Continuity of Lyapunov exponents is equivalent to continuity of Oseledets subspaces [J].
Backes, Lucas ;
Poletti, Mauricio .
STOCHASTICS AND DYNAMICS, 2017, 17 (06)