SOR-like iteration method for solving absolute value equations

被引:94
作者
Ke, Yi-Fen
Ma, Chang-Feng [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350117, Peoples R China
关键词
Absolute value equations; SOR-like method; Matrix splitting; Convergence analysis; GENERALIZED NEWTON METHOD; CONVERGENCE;
D O I
10.1016/j.amc.2017.05.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an SOR-like iteration method for solving the absolute value equation (AVE), which is obtained by reformulating equivalently the AVE as a two-by-two block nonlinear equation. The convergence results of the proposed iteration method are proved under certain assumptions imposed on the involved parameter. Numerical experiments are given to demonstrate the feasibility, robustness and effectiveness of the SOR-like iteration method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 36 条
[1]   Modulus-based synchronous multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) :425-439
[2]   Modulus-based matrix splitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) :917-933
[3]   On HSS-based iteration methods for weakly nonlinear systems [J].
Bai, Zhong-Zhi ;
Yang, Xi .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (12) :2923-2936
[4]   On the global convergence of the inexact semi-smooth Newton method for absolute value equation [J].
Bello Cruz, J. Y. ;
Ferreira, O. P. ;
Prudente, L. F. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) :93-108
[5]  
Berman A., 1994, Nonnegative Matrices in the Mathematical Sciences
[6]   A globally and quadratically convergent method for absolute value equations [J].
Caccetta, Louis ;
Qu, Biao ;
Zhou, Guanglu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) :45-58
[7]  
Davis Tim., U FLORIDA SPARSE MAT
[8]   A generalization of the Gauss-Seidel iteration method for solving absolute value equations [J].
Edalatpour, Vahid ;
Hezari, Davod ;
Salkuyeh, Davod Khojasteh .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 :156-167
[9]   A generalized Newton method for absolute value equations associated with second order cones [J].
Hu, Sheng-Long ;
Huang, Zheng-Hai ;
Zhang, Qiong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) :1490-1501
[10]   A note on absolute value equations [J].
Hu, Sheng-Long ;
Huang, Zheng-Hai .
OPTIMIZATION LETTERS, 2010, 4 (03) :417-424