The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China

被引:62
作者
Zhou, LX
Tang, J
Wen, YP
Li, JL
Yan, P
Zhang, XC
机构
[1] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3050053, Japan
[2] Chinese Acad Meteorol Sci, Res Ctr Earth Environm & Global Change, Beijing 100081, Peoples R China
[3] Peking Univ, Ctr Environm Sci, Beijing 100871, Peoples R China
[4] Qinhai Meteorol Bur, Xining 810001, Qinghai, Peoples R China
关键词
D O I
10.1034/j.1600-0889.2003.00064.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper describes the continuous measurements of atmospheric carbon dioxide at Mt. Waliguan (36degrees17'N, 100degrees54'E, 3816 m asl) in western China over the period 1994-2000. The CO2 hourly mixing ratios were segregated by horizontal wind direction/speed and vertical winds, respectively, merged by season over the entire measurement period. The short-term variability in CO2 was examined mainly from the point of view of local winds observed at this station and isobaric back trajectory cluster-concentration analysis as for local and long-range transport influence, to permit the selection of hourly average data that is representative of background conditions. From the selected hourly data, daily, monthly and annual averages that are not influenced by local CO2 sources and sinks be computed by discriminating the local and regional impact on the Waliguan CO2 records. On the basis of these results, background CO2 data were then analyzed to evaluate the averaged diurnal variation, monthly mean time series, CO2 mixing ratio distribution in different seasons as well as averaged seasonal cycle. Annual mean and growth rate of CO2 at Waliguan during the period of 1991 to 2000 were further discussed by supplement with NOAA/CMDL flask air sampling records at this station and other monitoring stations located at similar latitudinal band in the Northern Hemisphere. The results from this study can provide atmospheric CO2 characteristics in Asian inland regions, and be used in other studies to improve the understanding of carbon source and sink distributions.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 53 条
[1]   SEASONAL AMPLITUDE INCREASE IN ATMOSPHERIC CO2 CONCENTRATION AT MAUNA LOA, HAWAII, 1959-1982 [J].
BACASTOW, RB ;
KEELING, CD ;
WHORF, TP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1985, 90 (ND6) :10529-10540
[2]  
BAI NB, 1996, ATMOSPHERIC OZONE VA, P145
[3]  
BEARDSMORE D J, 1987, Tellus Series B Chemical and Physical Meteorology, V39, P42
[4]   A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants [J].
Brankov, E ;
Rao, ST ;
Porter, PS .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (09) :1525-1534
[5]   ON THE FREQUENCY OF LONG-RANGE TRANSPORT EVENTS AT POINT-BARROW, ALASKA, 1983-1992 [J].
BRIDGMAN, HA ;
BODHAINE, BA .
ATMOSPHERIC ENVIRONMENT, 1994, 28 (21) :3537-3549
[6]   The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland [J].
Cape, JN ;
Methven, J ;
Hudson, LE .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (22) :3651-3663
[7]   THE VARIATIONS OF ATMOSPHERIC CARBON-DIOXIDE AT ALERT AND SABLE ISLAND, CANADA [J].
CHUNG, YS .
ATMOSPHERIC ENVIRONMENT, 1988, 22 (02) :383-394
[9]  
CIATTAGLIA L, 1987, Tellus Series B Chemical and Physical Meteorology, V39, P13
[10]   Continuous measurements of atmospheric CO2 at Jubany Station, Antarctica [J].
Ciattaglia, L ;
Colombo, T ;
Masarie, KA .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1999, 51 (03) :713-721