Solutions for Discrete Periodic Schrodinger Equations with Spectrum 0

被引:44
作者
Yang, Minbo [1 ,2 ]
Chen, Wenxiong [1 ]
Ding, Yanheng [1 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Math, Beijing 100190, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
Discrete Schrodinger equation; Standing waves; Nonlinear lattices; GAP SOLITONS; EXCITATION; SEQUENCES; EXISTENCE;
D O I
10.1007/s10440-009-9521-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the discrete nonlinear equation -Delta u(n) + epsilon(n)u(n) - omega u(n) = sigma chi(n)g(n)(u(n))u(n), where sigma = +/-1, Delta u(n) = u(n+1) + u(n-1) - 2u(n) is the discrete Laplacian in one spatial dimension. The sequences epsilon(n) and chi(n) are assumed to be N-periodic in n, i.e. epsilon(n+N) = epsilon(n) and chi(n+N) = chi(n). We prove the existence of solutions in l(2) for this equation with. a lower edge of a finite spectral gap and the nonlinearities satisfying very general superlinear assumptions.
引用
收藏
页码:1475 / 1488
页数:14
相关论文
共 28 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[3]  
Agarwal RP., 1992, DIFFERENCE EQUATIONS
[4]   DOMINANT AND RECESSIVE SOLUTIONS OF SYMMETRICAL 3 TERM RECURRENCES [J].
AHLBRANDT, CD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :238-258
[5]  
[Anonymous], 2007, INTERDISCIPLINARY MA
[6]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[7]   Mathematical frontiers in optical solitons [J].
Bronski, JC ;
Segev, M ;
Weinstein, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12872-12873
[8]   On almost-periodic operators in the spaces of sequences [J].
Bruno, G ;
Pankov, A ;
Tverdokhleb, Y .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :153-167
[9]   DISCONJUGACY, DISFOCALITY, AND OSCILLATION OF 2ND-ORDER DIFFERENCE-EQUATIONS [J].
CHEN, SZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :383-394
[10]   THEORY OF CONTRACTION OF PROTEINS UNDER THEIR EXCITATION [J].
DAVYDOV, AS .
JOURNAL OF THEORETICAL BIOLOGY, 1973, 38 (03) :559-569