Enhanced Fault-Tolerant Quantum Computing in d-Level Systems

被引:134
作者
Campbell, Earl T. [1 ,2 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[2] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
关键词
STATE DISTILLATION; COMPUTATION; UNIVERSALITY; CODE;
D O I
10.1103/PhysRevLett.113.230501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n = d - 1 qudits and can detect up to similar to d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.
引用
收藏
页数:5
相关论文
共 47 条
[1]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[2]   Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes [J].
Anderson, Jonas T. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2014, 113 (08)
[3]  
Andrist S., ARXIV14065974
[4]   Fast decoders for qudit topological codes [J].
Anwar, Hussain ;
Brown, Benjamin J. ;
Campbell, Earl T. ;
Browne, Dan E. .
NEW JOURNAL OF PHYSICS, 2014, 16
[5]   Qutrit magic state distillation [J].
Anwar, Hussain ;
Campbell, Earl T. ;
Browne, Dan E. .
NEW JOURNAL OF PHYSICS, 2012, 14
[6]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[7]   Order 3 symmetry in the Clifford hierarchy [J].
Bengtsson, Ingemar ;
Blanchfield, Kate ;
Campbell, Earl ;
Howard, Mark .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (45)
[8]  
Bermejo-Vega J, 2014, QUANTUM INF COMPUT, V14, P181
[9]   Orbits of mutually unbiased bases [J].
Blanchfield, Kate .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (13)
[10]   Self-correcting quantum computers [J].
Bombin, H. ;
Chhajlany, R. W. ;
Horodecki, M. ;
Martin-Delgado, M. A. .
NEW JOURNAL OF PHYSICS, 2013, 15