Optimizing the oxide support composition in Pr-doped CeO2 towards highly active and selective Ni-based CO2 methanation catalysts

被引:73
作者
Tsiotsias, Anastasios I. [1 ]
Charisiou, Nikolaos D. [1 ]
AlKhoori, Ayesha [2 ,3 ]
Gaber, Safa [2 ,3 ]
Stolojan, Vlad [4 ]
Sebastian, Victor [5 ,6 ,7 ]
van der Linden, Bart [8 ]
Bansode, Atul [8 ]
Hinder, Steven J. [9 ]
Baker, Mark A. [9 ]
Polychronopoulou, Kyriaki [2 ,3 ,9 ]
Goula, Maria A. [1 ]
机构
[1] Univ Western Macedonia, Dept Chem Engn, Lab Alternat Fuels & Environm Catalysis LAFEC, GR-50100 Kozani, Greece
[2] Khalifa Univ Sci & Technol, Dept Mech Engn, POB 127788, Abu Dhabi, U Arab Emirates
[3] Khalifa Univ Sci & Technol, Ctr Catalysis & Separat, POB 127788, Abu Dhabi, U Arab Emirates
[4] Univ Surrey, Adv Technol Inst, Dept Elect & Elect Engn, Guildford GU2 4DL, England
[5] Univ Zaragoza, Dept Chem Engn & Environm Technol, Campus Rio Ebro Edificio ID, Zaragoza 50018, Spain
[6] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, C Maria Luna 3, Zaragoza 50018, Spain
[7] Networking Res Ctr Bioengn, Biomat & Nanomed, CIBERBBN, Madrid 28029, Spain
[8] Delft Univ Technol, Dept Chem Engn, Massweg 9, NL-2629 HZ Delft, Netherlands
[9] Univ Surrey, Fac Engn & Phys Sci, Surface Anal Lab, Guildford GU2 4DL, England
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 71卷
关键词
Power-to-gas; CO; 2; methanation; Ni-based catalyst; Pr-doped CeO 2; Oxygen vacancy; Catalytic activity; Activation energy; X-RAY; NANOPARTICLES; HYDROGENATION; ACTIVATION; MECHANISMS; SURFACES; NI(111); NI/CEO2; VACANCY; STORAGE;
D O I
10.1016/j.jechem.2022.04.003
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, Ni catalysts supported on Pr-doped CeO2 are studied for the CO2 methanation reaction and the effect of Pr doping on the physicochemical properties and the catalytic performance is thoroughly evaluated. It is shown, that Pr3+ ions can substitute Ce4+ones in the support lattice, thereby introducing a high population of oxygen vacancies, which act as active sites for CO2 chemisorption. Pr doping can also act to reduce the crystallite size of metallic Ni, thus promoting the active metal dispersion. Catalytic performance evaluation evidences the promoting effect of low Pr loadings (5 at% and 10 at%) towards a higher catalytic activity and lower CO2 activation energy. On the other hand, higher Pr contents negate the positive effects on the catalytic activity by decreasing the oxygen vacancy population, thereby creating a volcano-type trend towards an optimum amount of aliovalent substitution. CO 2022 Published by ELSEVIER B.V. and Science Press on behalf of Science Press and Dalian Institute of
引用
收藏
页码:547 / 561
页数:15
相关论文
共 68 条
[1]   Hydrogen production, storage, transportation and key challenges with applications: A review [J].
Abdalla, Abdalla M. ;
Hossain, Shahzad ;
Nisfindy, Ozzan B. ;
Azad, Atia T. ;
Dawood, Mohamed ;
Azad, Abul K. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 165 :602-627
[2]   A review on catalyst development for dry reforming of methane to syngas: Recent advances [J].
Abdulrasheed, Abdulrahman ;
Jalil, Aishah Abdul ;
Gambo, Yahya ;
Ibrahim, Maryam ;
Hambali, Hambali Umar ;
Hamill, Muhamed Yusuf Shahul .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 :175-193
[3]   Role of Multivalent Pr in the Formation and Migration of Oxygen Vacancy in Pr-Doped Ceria: Experimental and First-Principles Investigations [J].
Ahn, Kiyong ;
Yoo, Dong Su ;
Prasad, D. Hari ;
Lee, Hae-Weon ;
Chung, Yong-Chae ;
Lee, Jong-Ho .
CHEMISTRY OF MATERIALS, 2012, 24 (21) :4261-4267
[4]   Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation [J].
Alcalde-Santiago, Virginia ;
Davo-Quinonero, Arantxa ;
Lozano-Castello, Dolores ;
Quindimil, Adrian ;
De-La-Torre, Unai ;
Pereda-Ayo, Benat ;
Gonzalez-Marcos, Jose A. ;
Gonzalez-Velasco, Juan R. ;
Bueno-Lopez, Agustin .
CHEMCATCHEM, 2019, 11 (02) :810-819
[5]   Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy [J].
Aldana, P. A. Ussa ;
Ocampo, F. ;
Kobl, K. ;
Louis, B. ;
Thibault-Starzyk, F. ;
Daturi, M. ;
Bazin, P. ;
Thomas, S. ;
Roger, A. C. .
CATALYSIS TODAY, 2013, 215 :201-207
[6]   Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions [J].
Arellano-Trevino, Martha A. ;
Kanani, Nisarg ;
Jeong-Potter, Chae W. ;
Farrauto, Robert J. .
CHEMICAL ENGINEERING JOURNAL, 2019, 375
[7]   Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods [J].
Ashok, J. ;
Ang, M. L. ;
Kawi, S. .
CATALYSIS TODAY, 2017, 281 :304-311
[8]   Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies [J].
Bacariza, M. Carmen ;
Spataru, Daniela ;
Karam, Leila ;
Lopes, Jose M. ;
Henriques, Carlos .
PROCESSES, 2020, 8 (12) :1-45
[9]   Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium [J].
Borchert, H ;
Frolova, YV ;
Kaichev, VV ;
Prosvirin, IP ;
Alikina, GM ;
Lukashevich, AI ;
Zaikovskii, VI ;
Moroz, EM ;
Trukhan, SN ;
Ivanov, VP ;
Paukshtis, EA ;
Bukhtiyarov, VI ;
Sadykov, VA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (12) :5728-5738
[10]  
Bossel U., 2002, LUCERNE, V36, P1