ADI preconditioned Krylov methods for large Lyapunov matrix equations

被引:31
|
作者
Jbilou, K. [1 ]
机构
[1] Univ Littoral, LMPA, F-62228 Calais, France
关键词
ADI; Global Arnoldi; Matrix Krylov subspaces; Low-rank approximations; Lyapunov equation; Stein equation; SUBSPACE METHODS; ALGORITHM; GMRES;
D O I
10.1016/j.laa.2009.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we propose preconditioned Krylov methods for solving large Lyapunov matrix equations AX + XA(T) + BBT = 0. Such problems appear in control theory, model reduction, circuit simulation and others. Using the Alternating Direction Implicit (AD!) iteration method, we transform the original Lyapunov equation to an equivalent symmetric Stein equation depending on some AD! parameters. We then define the Smith and the low rank ADI preconditioners. To solve the obtained Stein matrix equation, we apply the global Arnoldi method and get low rank approximate solutions. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approaches. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2473 / 2485
页数:13
相关论文
共 50 条
  • [1] On an integrated Krylov-ADI solver for large-scale Lyapunov equations
    Benner, Peter
    Palitta, Davide
    Saak, Jens
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 35 - 63
  • [2] KRYLOV SUBSPACE METHODS FOR SOLVING LARGE LYAPUNOV EQUATIONS
    JAIMOUKHA, IM
    KASENALLY, EM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (01) : 227 - 251
  • [3] A preconditioned block Arnoldi method for large scale Lyapunov and algebraic Riccati equations
    Bouhamidi, A.
    Hached, M.
    Jbilou, K.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (01) : 19 - 32
  • [4] A preconditioned block Arnoldi method for large scale Lyapunov and algebraic Riccati equations
    A. Bouhamidi
    M. Hached
    K. Jbilou
    Journal of Global Optimization, 2016, 65 : 19 - 32
  • [5] Projection methods for large Lyapunov matrix equations
    Jbilou, K.
    Riquet, A. J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (2-3) : 344 - 358
  • [6] ANALYSIS OF THE RATIONAL KRYLOV SUBSPACE AND ADI METHODS FOR SOLVING THE LYAPUNOV EQUATION
    Druskin, V.
    Knizhnerman, L.
    Simoncini, V.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 1875 - 1898
  • [7] On Some Extended Block Krylov Based Methods for Large Scale Nonsymmetric Stein Matrix Equations
    Bentbib, Abdeslem Hafid
    Jbilou, Khalide
    Sadek, E. L. Mostafa
    MATHEMATICS, 2017, 5 (02):
  • [8] SELF-GENERATING AND EFFICIENT SHIFT PARAMETERS IN ADI METHODS FOR LARGE LYAPUNOV AND SYLVESTER EQUATIONS
    Benner, Peter
    Kuerschner, Patrick
    Saak, Jens
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 43 : 142 - 162
  • [9] Numerical methods for differential linear matrix equations via Krylov subspace methods
    Hached, M.
    Jbilou, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
  • [10] Inexact methods for the low rank solution to large scale Lyapunov equations
    Kurschner, Patrick
    Freitag, Melina A.
    BIT NUMERICAL MATHEMATICS, 2020, 60 (04) : 1221 - 1259