Engineering Electron-Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator

被引:38
作者
Chen, Huiyao [1 ]
Opondo, Noah F. [2 ]
Jiang, Boyang [2 ]
MacQuarrie, Evan R. [1 ]
Daveau, Raphael S. [1 ]
Bhave, Sunil A. [2 ]
Fuchs, Gregory D. [1 ,3 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
[3] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Nitrogen-vacancy center; diamond; silicon carbide; MEMS; bulk acoustic resonator; COHERENT CONTROL; SILICON-CARBIDE; STATE; SPINS; TECHNOLOGIES; ENTANGLEMENT; ABSORPTION; SOUND; SAW;
D O I
10.1021/acs.nanolett.9b02430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Diamond-based microelectromechanical systems (MEMS) enable direct coupling between the quantum states of nitrogen-vacancy (NV) centers and the phonon modes of a mechanical resonator. One example, a diamond high-overtone bulk acoustic resonator (HBAR), features an integrated piezoelectric transducer and supports high-quality factor resonance modes into the gigahertz frequency range. The acoustic modes allow mechanical manipulation of deeply embedded NV centers with long spin and orbital coherence times. Unfortunately, the spin-phonon coupling rate is limited by the large resonator size, >100 mu m, and thus strongly coupled NV electron-phonon interactions remain out of reach in current diamond BAR devices. Here, we report the design and fabrication of a semiconfocal HBAR (SCHBAR) device on diamond (silicon carbide) with f x Q > 10(12) (>10(13)). The semiconfocal geometry confines the phonon mode laterally below 10 mu m. This drastic reduction in modal volume enhances defect center coupling to a mechanical mode by 1000 times compared to prior HBAR devices. For the native NV centers inside the diamond device, we demonstrate mechanically driven spin transitions and show a high strain-driving efficiency with a Rabi frequency of (2 pi)2.19(14) MHz/V-p, which is comparable to a typical microwave antenna at the same microwave power, making SCHBAR a power-efficient device useful for fast spin control, dressed state coherence protection, and quantum circuit integration.
引用
收藏
页码:7021 / 7027
页数:7
相关论文
共 48 条
[1]   SAW and BAW Technologies for RF Filter Applications: A Review of the Relative Strengths and Weaknesses [J].
Aigner, Robert .
2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, :582-589
[2]  
Akhieser A, 1939, J PHYS-USSR, V1, P277
[3]   Fabrication of all diamond scanning probes for nanoscale magnetometry [J].
Appel, Patrick ;
Neu, Elke ;
Ganzhorn, Marc ;
Barfuss, Arne ;
Batzer, Marietta ;
Gratz, Micha ;
Tschoepe, Andreas ;
Maletinsky, Patrick .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (06)
[4]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[5]  
Barfuss A, 2015, NAT PHYS, V11, P820, DOI [10.1038/nphys3411, 10.1038/NPHYS3411]
[6]  
Baron T, 2013, MODELING AND MEASUREMENT METHODS FOR ACOUSTIC WAVES AND FOR ACOUSTIC MICRODEVICES, P297
[7]   Nanomechanical Sensing Using Spins in Diamond [J].
Barson, Michael S. J. ;
Peddibhotla, Phani ;
Ovartchaiyapong, Preeti ;
Ganesan, Kumaravelu ;
Taylor, Richard L. ;
Gebert, Matthew ;
Mielens, Zoe ;
Koslowski, Berndt ;
Simpson, David A. ;
McGuinness, Liam P. ;
McCallum, Jeffrey ;
Prawer, Steven ;
Onoda, Shinobu ;
Ohshima, Takeshi ;
Jayich, Ania C. Bleszynski ;
Jelezko, Fedor ;
Manson, Neil B. ;
Doherty, Marcus W. .
NANO LETTERS, 2017, 17 (03) :1496-1503
[8]   Diamond processing by focused ion beam-surface damage and recovery [J].
Bayn, I. ;
Bolker, A. ;
Cytermann, C. ;
Meyler, B. ;
Richter, V. ;
Salzman, J. ;
Kalish, R. .
APPLIED PHYSICS LETTERS, 2011, 99 (18)
[9]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[10]  
Bhugra H., 2017, PIEZOELECTRIC MEMS R