Gold coated iron phosphide core-shell structures

被引:6
作者
Kelly, Anna T. [1 ]
Filgueira, Carly S. [1 ]
Schipper, Desmond E. [1 ]
Halas, Naomi J. [1 ,2 ]
Whitmire, Kenton H. [1 ]
机构
[1] Rice Univ, Dept Chem, MS60,6100 Main St, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Dept Elect & Comp Engn, MS366,MS61,6100 Main St, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
MAGNETIC OXIDE NANOPARTICLES; BIOLOGICAL APPLICATIONS; QUANTUM DOTS; NANORODS; GROWTH; NANOSTRUCTURES; HYBRIDIZATION; NANOCRYSTALS; NANOSHELLS; RESONANCES;
D O I
10.1039/c7ra01195d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Core-shell particles Fe2P@Au have been prepared beginning with Fe2P nanorods, nanocrosses and nanobundles prepared from the solvothermal decomposition of H2Fe3(CO)(9)(mu(3)-(PBu)-Bu-t). Iron phosphide structures can be produced from a single-source organometallic precursor with morphological control by varying the surfactant conditions to yield fiber bundles and dumbbell-shaped bundles ranging from nanometers to microns. Derivatization of the surfaces with gamma-aminobutyric acid was used to attach Au nanoparticle seeds to the surface of the Fe2P nanoparticles followed by completion of the Au shell by reduction with formaldehyde or aqueous HAuCl4/CO, with the latter giving somewhat better results. Shell thickness ranged from an incomplete, partially coated Au shell to a thickness of 65 + 21 nm by varying the amount of gold decorated precursor particles. Increasing the thicknesses of the Au shells produced a redshift in the plasmonic resonance of the resulting structures as was observed previously for FeOx@Au.
引用
收藏
页码:25848 / 25854
页数:7
相关论文
共 50 条
[1]   Recording-media-related morphology and magnetic properties of crystalline CoPt3 and CoPt3-Au core-shell nanoparticles synthesized via reverse microemulsion [J].
Bahmanrokh, Ghazaleh ;
Hashim, Mansor ;
Matori, Khamirul Amin ;
Navasery, Manizheh ;
Soltani, Nayereh ;
Vaziri, Parisa ;
Kanagesan, Samikannu ;
Sabbaghizadeh, Rahim ;
Shafie, Mohd Shamsul Ezzad .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (09)
[2]   Magnetically recoverable supported ruthenium catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds [J].
Baruwati, Babita ;
Polshettiwar, Vivek ;
Varma, Rajender S. .
TETRAHEDRON LETTERS, 2009, 50 (11) :1215-1218
[3]   Nanoshells Made Easy: Improving Au Layer Growth on Nanoparticle Surfaces [J].
Brinson, Bruce E. ;
Lassiter, J. Britt ;
Levin, Carly S. ;
Bardhan, Rizia ;
Mirin, Nikolay ;
Halas, Naomi J. .
LANGMUIR, 2008, 24 (24) :14166-14171
[4]   Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications [J].
Brock, Stephanie L. ;
Senevirathne, Keerthi .
JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (07) :1552-1559
[5]   Attachment of gold nanograins onto colloidal magnetite nanocrystals [J].
Caruntu, D ;
Cushing, BL ;
Caruntu, G ;
O'Connor, CJ .
CHEMISTRY OF MATERIALS, 2005, 17 (13) :3398-3402
[6]   Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology [J].
Cheon, Jinwoo ;
Lee, Jae-Hyun .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1630-1640
[7]   SINGLE-DOMAIN MAGNETIC PILLAR ARRAY OF 35-NM DIAMETER AND 65-GBITS/IN(2) DENSITY FOR ULTRAHIGH DENSITY QUANTUM MAGNETIC STORAGE [J].
CHOU, SY ;
WEI, MS ;
KRAUSS, PR ;
FISCHER, PB .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (10) :6673-6675
[8]   Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible [J].
De Palma, Randy ;
Peeters, Sara ;
Van Bael, Margriet J. ;
Van den Rul, Heidi ;
Bonroy, Kristien ;
Laureyn, Wim ;
Mullens, Jules ;
Borghs, Gustaaf ;
Maes, Guido .
CHEMISTRY OF MATERIALS, 2007, 19 (07) :1821-1831
[9]  
Ding SY, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.21, 10.1038/natrevmats.2016.71]
[10]   Remote control of cellular behaviour with magnetic nanoparticles [J].
Dobson, Jon .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :139-143