Gold coated iron phosphide core-shell structures

被引:6
作者
Kelly, Anna T. [1 ]
Filgueira, Carly S. [1 ]
Schipper, Desmond E. [1 ]
Halas, Naomi J. [1 ,2 ]
Whitmire, Kenton H. [1 ]
机构
[1] Rice Univ, Dept Chem, MS60,6100 Main St, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Dept Elect & Comp Engn, MS366,MS61,6100 Main St, Houston, TX 77005 USA
来源
RSC ADVANCES | 2017年 / 7卷 / 42期
基金
美国国家科学基金会;
关键词
MAGNETIC OXIDE NANOPARTICLES; BIOLOGICAL APPLICATIONS; QUANTUM DOTS; NANORODS; GROWTH; NANOSTRUCTURES; HYBRIDIZATION; NANOCRYSTALS; NANOSHELLS; RESONANCES;
D O I
10.1039/c7ra01195d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Core-shell particles Fe2P@Au have been prepared beginning with Fe2P nanorods, nanocrosses and nanobundles prepared from the solvothermal decomposition of H2Fe3(CO)(9)(mu(3)-(PBu)-Bu-t). Iron phosphide structures can be produced from a single-source organometallic precursor with morphological control by varying the surfactant conditions to yield fiber bundles and dumbbell-shaped bundles ranging from nanometers to microns. Derivatization of the surfaces with gamma-aminobutyric acid was used to attach Au nanoparticle seeds to the surface of the Fe2P nanoparticles followed by completion of the Au shell by reduction with formaldehyde or aqueous HAuCl4/CO, with the latter giving somewhat better results. Shell thickness ranged from an incomplete, partially coated Au shell to a thickness of 65 + 21 nm by varying the amount of gold decorated precursor particles. Increasing the thicknesses of the Au shells produced a redshift in the plasmonic resonance of the resulting structures as was observed previously for FeOx@Au.
引用
收藏
页码:25848 / 25854
页数:7
相关论文
共 50 条
  • [1] Recording-media-related morphology and magnetic properties of crystalline CoPt3 and CoPt3-Au core-shell nanoparticles synthesized via reverse microemulsion
    Bahmanrokh, Ghazaleh
    Hashim, Mansor
    Matori, Khamirul Amin
    Navasery, Manizheh
    Soltani, Nayereh
    Vaziri, Parisa
    Kanagesan, Samikannu
    Sabbaghizadeh, Rahim
    Shafie, Mohd Shamsul Ezzad
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (09)
  • [2] Magnetically recoverable supported ruthenium catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds
    Baruwati, Babita
    Polshettiwar, Vivek
    Varma, Rajender S.
    [J]. TETRAHEDRON LETTERS, 2009, 50 (11) : 1215 - 1218
  • [3] Nanoshells Made Easy: Improving Au Layer Growth on Nanoparticle Surfaces
    Brinson, Bruce E.
    Lassiter, J. Britt
    Levin, Carly S.
    Bardhan, Rizia
    Mirin, Nikolay
    Halas, Naomi J.
    [J]. LANGMUIR, 2008, 24 (24) : 14166 - 14171
  • [4] Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications
    Brock, Stephanie L.
    Senevirathne, Keerthi
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (07) : 1552 - 1559
  • [5] Attachment of gold nanograins onto colloidal magnetite nanocrystals
    Caruntu, D
    Cushing, BL
    Caruntu, G
    O'Connor, CJ
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (13) : 3398 - 3402
  • [6] Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology
    Cheon, Jinwoo
    Lee, Jae-Hyun
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) : 1630 - 1640
  • [7] SINGLE-DOMAIN MAGNETIC PILLAR ARRAY OF 35-NM DIAMETER AND 65-GBITS/IN(2) DENSITY FOR ULTRAHIGH DENSITY QUANTUM MAGNETIC STORAGE
    CHOU, SY
    WEI, MS
    KRAUSS, PR
    FISCHER, PB
    [J]. JOURNAL OF APPLIED PHYSICS, 1994, 76 (10) : 6673 - 6675
  • [8] Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible
    De Palma, Randy
    Peeters, Sara
    Van Bael, Margriet J.
    Van den Rul, Heidi
    Bonroy, Kristien
    Laureyn, Wim
    Mullens, Jules
    Borghs, Gustaaf
    Maes, Guido
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (07) : 1821 - 1831
  • [9] Ding SY, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.21, 10.1038/natrevmats.2016.71]
  • [10] Remote control of cellular behaviour with magnetic nanoparticles
    Dobson, Jon
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (03) : 139 - 143