Clustering huge protein sequence sets in linear time

被引:504
作者
Steinegger, Martin [1 ,2 ,3 ]
Soeding, Johannes [1 ]
机构
[1] Max Planck Inst Biophys Chem, Quantitat & Computat Biol Grp, Fassberg 11, D-37077 Gottingen, Germany
[2] Tech Univ Munich, Dept Bioinformat & Computat Biol, D-85784 Garching, Germany
[3] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
基金
欧盟地平线“2020”;
关键词
CD-HIT; SEARCH; ALGORITHMS; DATABASE; GENOME;
D O I
10.1038/s41467-018-04964-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metagenomic datasets contain billions of protein sequences that could greatly enhance large-scale functional annotation and structure prediction. Utilizing this enormous resource would require reducing its redundancy by similarity clustering. However, clustering hundreds of millions of sequences is impractical using current algorithms because their runtimes scale as the input set size N times the number of clusters K, which is typically of similar order as N, resulting in runtimes that increase almost quadratically with N. We developed Linclust, the first clustering algorithm whose runtime scales as N, independent of K. It can also cluster datasets several times larger than the available main memory. We cluster 1.6 billion meta-genomic sequence fragments in 10 h on a single server to 50% sequence identity, >1000 times faster than has been possible before. Linclust will help to unlock the great wealth contained in metagenomic and genomic sequence databases.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes [J].
Albertsen, Mads ;
Hugenholtz, Philip ;
Skarshewski, Adam ;
Nielsen, Kare L. ;
Tyson, Gene W. ;
Nielsen, Per H. .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :533-+
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
[Anonymous], 2014, Hashing for similarity search: A survey
[4]  
[Anonymous], EXACT CLUSTERING LIN
[5]   The universal protein resource (UniProt) [J].
Bairoch, A ;
Apweiler, R ;
Wu, CH ;
Barker, WC ;
Boeckmann, B ;
Ferro, S ;
Gasteiger, E ;
Huang, HZ ;
Lopez, R ;
Magrane, M ;
Martin, MJ ;
Natale, DA ;
O'Donovan, C ;
Redaschi, N ;
Yeh, LSL .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D154-D159
[6]   Fast and sensitive protein alignment using DIAMOND [J].
Buchfink, Benjamin ;
Xie, Chao ;
Huson, Daniel H. .
NATURE METHODS, 2015, 12 (01) :59-60
[7]   EFFICIENT ALGORITHMS FOR AGGLOMERATIVE HIERARCHICAL-CLUSTERING METHODS [J].
DAY, WHE ;
EDELSBRUNNER, H .
JOURNAL OF CLASSIFICATION, 1984, 1 (01) :7-24
[8]   From genomics to metagenomics [J].
Desai, Narayan ;
Antonopoulos, Dion ;
Gilbert, Jack A. ;
Glass, Elizabeth M. ;
Meyer, Folker .
CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (01) :72-76
[9]   Search and clustering orders of magnitude faster than BLAST [J].
Edgar, Robert C. .
BIOINFORMATICS, 2010, 26 (19) :2460-2461
[10]   The Pfam protein families database: towards a more sustainable future [J].
Finn, Robert D. ;
Coggill, Penelope ;
Eberhardt, Ruth Y. ;
Eddy, Sean R. ;
Mistry, Jaina ;
Mitchell, Alex L. ;
Potter, Simon C. ;
Punta, Marco ;
Qureshi, Matloob ;
Sangrador-Vegas, Amaia ;
Salazar, Gustavo A. ;
Tate, John ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D279-D285