Enumerate Lasso Solutions for Feature Selection

被引:0
作者
Hara, Satoshi [1 ,3 ]
Maehara, Takanori [2 ,3 ]
机构
[1] Natl Inst Informat, Tokyo, Japan
[2] Shizuoka Univ, Shizuoka, Japan
[3] JST, Kawarabayashi Large Graph Project, ERATO, Osaka, Japan
来源
THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2017年
关键词
REGRESSION; SPARSITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm for enumerating solutions to the Lasso regression problem. In ordinary Lasso regression, one global optimum is obtained and the resulting features are interpreted as task-relevant features. However, this can overlook possibly relevant features not selected by the Lasso. With the proposed method, we can enumerate many possible feature sets for human inspection, thus recording all the important features. We prove that by enumerating solutions, we can recover a true feature set exactly under less restrictive conditions compared with the ordinary Lasso. We confirm our theoretical results also in numerical simulations. Finally, in the gene expression and the text data, we demonstrate that the proposed method can enumerate a wide variety of meaningful feature sets, which are overlooked by the global optima.
引用
收藏
页码:1985 / 1991
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[2]  
[Anonymous], 2019, Statistical learning with sparsity: the lasso and generalizations
[3]   Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J].
Atwell, Susanna ;
Huang, Yu S. ;
Vilhjalmsson, Bjarni J. ;
Willems, Glenda ;
Horton, Matthew ;
Li, Yan ;
Meng, Dazhe ;
Platt, Alexander ;
Tarone, Aaron M. ;
Hu, Tina T. ;
Jiang, Rong ;
Muliyati, N. Wayan ;
Zhang, Xu ;
Amer, Muhammad Ali ;
Baxter, Ivan ;
Brachi, Benjamin ;
Chory, Joanne ;
Dean, Caroline ;
Debieu, Marilyne ;
de Meaux, Juliette ;
Ecker, Joseph R. ;
Faure, Nathalie ;
Kniskern, Joel M. ;
Jones, Jonathan D. G. ;
Michael, Todd ;
Nemri, Adnane ;
Roux, Fabrice ;
Salt, David E. ;
Tang, Chunlao ;
Todesco, Marco ;
Traw, M. Brian ;
Weigel, Detlef ;
Marjoram, Paul ;
Borevitz, Justin O. ;
Bergelson, Joy ;
Nordborg, Magnus .
NATURE, 2010, 465 (7298) :627-631
[4]  
Boyd S, 2004, CONVEX OPTIMIZATION
[5]  
Brander Andrew William., 1996, Performance Engineering of Computer and Telecommunications Systems, P370, DOI DOI 10.1007/978-1-4471-1007-1_25
[6]   Optimal Enumeration: Efficient Top-k Tree Matching [J].
Chang, Lijun ;
Lin, Xuemin ;
Zhang, Wenjie ;
Yu, Jeffrey Xu ;
Zhang, Ying ;
Qin, Lu .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 8 (05) :533-544
[7]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
[8]  
Cohen A, 2009, J AM MATH SOC, V22, P211
[9]  
Knight K, 2000, ANN STAT, V28, P1356
[10]   PROCEDURE FOR COMPUTING K BEST SOLUTIONS TO DISCRETE OPTIMIZATION PROBLEMS AND ITS APPLICATION TO SHORTEST PATH PROBLEM [J].
LAWLER, EL .
MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (07) :401-405