Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials

被引:3
作者
Gadzhimirzaev, R. M. [1 ]
机构
[1] Russian Acad Sci, Daghestan Fed Res Ctr, Makhachkala 367025, Russia
关键词
Meixner polynomials; Fourier series; Lebesgue function;
D O I
10.1134/S0001434619090220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials m(n)(alpha),(N)(x), n = 0,1,..., which generate, for alpha > -1, an orthonormal system on the grid omega(delta) = {0, delta, 2 delta,...} with weight rho N(x)=e-x Gamma(Nx+alpha+1)(Nx+1)(1-e-delta)(alpha+1), where delta =1/N, N >= 1. The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function lambda(n),(alpha)(N)(x) of Fourier sums in terms of the modified Meixner polynomials for x is an element of [theta(n)/2, infinity) and theta(n) = 4n + 2 alpha + 2.
引用
收藏
页码:526 / 536
页数:11
相关论文
共 6 条
[1]  
Bateman H., 1953, Higher Transcendental Functions, VII
[2]  
Gadzhieva Z D, 2004, THESIS
[3]   APPROXIMATIVE PROPERTIES OF FOURIER - MEIXNER SUMS [J].
Gadzhimirzaev, R. M. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (01) :23-40
[4]  
Gadzhimirzaev R M, 2017, DAGHESTAN ELECT MAT, V7, P61, DOI [10.31029/demr.7.7, DOI 10.31029/DEMR.7.7]
[5]  
Nikiforov A. F., 1985, Classical Orthogonal Polynomials of a Discrete Variable
[6]  
Sharapudinov I. I., 1997, Polynomials Orthogonal on Grids