Non-trivial solutions of local and non-local Neumann boundary-value problems

被引:35
作者
Infante, Gennaro [1 ]
Pietramala, Paolamaria [1 ]
Tojo, F. Adrian F. [2 ]
机构
[1] Univ Calabria, Dipartimento Matemat & Informat, I-87036 Cosenza, Italy
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
fixed-point index; cone; non-trivial solution; Neumann conditions; MULTIPLE POSITIVE SOLUTIONS; FIXED-POINT THEOREM; HAMMERSTEIN INTEGRAL-EQUATIONS; LINEAR-OPERATORS; DIFFERENTIAL-EQUATIONS; EXISTENCE; CONES;
D O I
10.1017/S0308210515000499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove new results on the existence, non-existence, localization and multiplicity of non-trivial solutions for perturbed Hammerstein integral equations. Our approach is topological and relies on the classical fixed-point index. Some of the criteria involve a comparison with the spectral radius of some related linear operators. We apply our results to some boundary-value problems with local and non-local boundary conditions of Neumann type. We illustrate in some examples the methodologies used.
引用
收藏
页码:337 / 369
页数:33
相关论文
共 62 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
[Anonymous], 2000, DIFF EQNS DYNAM SYST
[3]   Neumann Boundary Value Problems with not Coercive Potential [J].
Bonanno, Gabriele ;
Pizzimenti, Pasquale F. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) :601-609
[4]   A critical point theorem via the Ekeland variational principle [J].
Bonanno, Gabriele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2992-3007
[5]   A note on a superlinear indefinite Neumann problem with multiple positive solutions [J].
Boscaggin, Alberto .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :259-268
[6]  
Cabada A., TOPOLOG MET IN PRESS
[7]   Nontrivial solutions of Hammerstein integral equations with reflections [J].
Cabada, Alberto ;
Infante, Gennaro ;
Fernandez Tojo, Fernando Adrian .
BOUNDARY VALUE PROBLEMS, 2013, :1-22
[8]   Comparison results for first order linear operators with reflection and periodic boundary value conditions [J].
Cabada, Alberto ;
Tojo, F. Adrian F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 78 :32-46
[9]  
CONTI R, 1967, B UNIONE MAT ITAL, V22, P135
[10]  
Dongming Y., 2011, INT J DIFF EQNS, V2011, DOI [10.1155/2011/376753, DOI 10.1155/2011/376753]