Almost compatible microstructures in shape memory alloys

被引:30
作者
Balandraud, X. [1 ]
Delpueyo, D. [2 ]
Grediac, M. [2 ]
Zanzotto, G. [3 ]
机构
[1] Univ Clermont Ferrand, Lab Mecan & Ingn, IFMA, F-63000 Clermont Ferrand, France
[2] Univ Clermont Ferrand, Lab Mecan & Ingn, Univ Blaise Pascal, F-63000 Clermont Ferrand, France
[3] Univ Padua, DMMMSA, I-35121 Padua, Italy
关键词
Martensitic phase transformation; Shape memory alloys (SMA); Microstructure; TRANSMISSION ELECTRON-MICROSCOPY; CU-AL-NI; MARTENSITIC TRANSFORMATIONS; PHASE-TRANSFORMATION; SINGLE-CRYSTALS; HYSTERESIS; TRANSITION; ENERGY; INTERFACE; AUSTENITE;
D O I
10.1016/j.actamat.2010.03.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coherent stress-free (CSF) microstructures with specific morphologies are favored in shape memory alloys (SMAs) when special relations are satisfied by the lattice parameters. Experimentally observed microstructures are, however, also formed at non-exact CSF conditions. Here we propose a framework for the investigation of almost compatible (i.e. non-perfectly CSF) twinned wedges in SMAs, and make a systematic study of these microstructures for two types of symmetry-breaking martensitic transformations. We determine the domains in lattice-parameter space wherein there exist, and coexist, different families of almost compatible wedges with low overall stress. We find these to be wide regions largely unrelated to the existence of special CSF relations, if any even exist, giving stress-free configurations. We propose SMA improvement can be obtained by targeting domains in lattice-parameter space wherein, besides satisfying other suitable properties, a maximum number of almost compatible microstructures can also form in the material. We develop this approach for wedges in SMAs undergoing the cubic-to-orthorhombic transformation (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
引用
收藏
页码:4559 / 4577
页数:19
相关论文
共 50 条
[41]   Microstructures in Low-Hysteresis Shape Memory Alloys: Scaling Regimes and Optimal Needle Shapes [J].
Barbara Zwicknagl .
Archive for Rational Mechanics and Analysis, 2014, 213 :355-421
[42]   Crystal-to-amorphous phase transformation in ternary shape memory alloys [J].
Hahmir, Hamed S. ;
Hosseinzadeh, Mohammadreza ;
Kim, Hyoung Seop ;
Nili- Ahmadabadi, Mahmoud .
INTERMETALLICS, 2024, 168
[43]   Martensitic stabilization and defects induced by deformation in TiNi shape memory alloys [J].
Wang, Shuai ;
Tsuchiya, Koichi ;
Wang, Lei ;
Umemoto, Minoru .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2011, 18 (01) :66-69
[44]   Phase transformation yield surface determination for some shape memory alloys [J].
Lexcellent, C ;
Blanc, P .
ACTA MATERIALIA, 2004, 52 (08) :2317-2324
[45]   Atomistic study on shape memory properties of Ni-Al alloys [J].
Chang, I-Ling ;
Hsu, Chin-Chen ;
Chao, Ta-Hsiung .
JOURNAL OF MATERIALS RESEARCH, 2019, 34 (15) :2727-2735
[46]   Microstructure and martensitic transformation of NiTiHfSc high temperature shape memory alloys [J].
Fan, X. M. ;
Sun, S. Y. ;
Tong, Y. X. ;
Li, L. ;
Tian, B. ;
Chen, E. ;
Zheng, Y. F. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 779 :212-218
[47]   Energy damping in shape memory alloys: A review [J].
Saedi, Soheil ;
Acar, Emre ;
Raji, Hatim ;
Saghaian, Sayed Ehsan ;
Mirsayar, Mirmilad .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 956
[48]   Microstructure of macrointerfaces in shape-memory alloys [J].
Conti, Sergio ;
Lenz, Martin ;
Rumpf, Martin ;
Verhuelsdonk, Jan ;
Zwicknagl, Barbara .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 179
[49]   Strain intermittency in shape-memory alloys [J].
Balandraud, Xavier ;
Barrera, Noemi ;
Biscari, Paolo ;
Grediac, Michel ;
Zanzotto, Giovanni .
PHYSICAL REVIEW B, 2015, 91 (17)
[50]   Approximation in multiscale modelling of microstructure evolution in shape-memory alloys [J].
Roubicek, Tomas .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2011, 23 (06) :491-507