Almost compatible microstructures in shape memory alloys

被引:30
作者
Balandraud, X. [1 ]
Delpueyo, D. [2 ]
Grediac, M. [2 ]
Zanzotto, G. [3 ]
机构
[1] Univ Clermont Ferrand, Lab Mecan & Ingn, IFMA, F-63000 Clermont Ferrand, France
[2] Univ Clermont Ferrand, Lab Mecan & Ingn, Univ Blaise Pascal, F-63000 Clermont Ferrand, France
[3] Univ Padua, DMMMSA, I-35121 Padua, Italy
关键词
Martensitic phase transformation; Shape memory alloys (SMA); Microstructure; TRANSMISSION ELECTRON-MICROSCOPY; CU-AL-NI; MARTENSITIC TRANSFORMATIONS; PHASE-TRANSFORMATION; SINGLE-CRYSTALS; HYSTERESIS; TRANSITION; ENERGY; INTERFACE; AUSTENITE;
D O I
10.1016/j.actamat.2010.03.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coherent stress-free (CSF) microstructures with specific morphologies are favored in shape memory alloys (SMAs) when special relations are satisfied by the lattice parameters. Experimentally observed microstructures are, however, also formed at non-exact CSF conditions. Here we propose a framework for the investigation of almost compatible (i.e. non-perfectly CSF) twinned wedges in SMAs, and make a systematic study of these microstructures for two types of symmetry-breaking martensitic transformations. We determine the domains in lattice-parameter space wherein there exist, and coexist, different families of almost compatible wedges with low overall stress. We find these to be wide regions largely unrelated to the existence of special CSF relations, if any even exist, giving stress-free configurations. We propose SMA improvement can be obtained by targeting domains in lattice-parameter space wherein, besides satisfying other suitable properties, a maximum number of almost compatible microstructures can also form in the material. We develop this approach for wedges in SMAs undergoing the cubic-to-orthorhombic transformation (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
引用
收藏
页码:4559 / 4577
页数:19
相关论文
共 50 条
  • [31] Criteria of transformation sequences in NiTi shape memory alloys
    Liu, YN
    McCormick, PG
    MATERIALS TRANSACTIONS JIM, 1996, 37 (04): : 691 - 696
  • [32] Research Progress of High Entropy Shape Memory Alloys
    Li Binqiang
    Wang Liang
    Yao Longhui
    Cui Ran
    Luo Liangshun
    Chen Ruirun
    Su Yanqing
    Guo Jingjie
    Fu Hengzhi
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (06) : 2208 - 2214
  • [33] Influence of thermo-mechanical treatment on mechanical properties and shape memory effect of CuAlNiMnTi shape memory alloys
    Abdelghafar, K. A.
    Hussein, A. A.
    Elbanna, E. M.
    Waly, M. A.
    Ibrahim, M. M.
    INTERMETALLICS, 2021, 136
  • [34] High temperature shape memory alloys
    Ma, J.
    Karaman, I.
    Noebe, R. D.
    INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (05) : 257 - 315
  • [35] Recent Progress in Shape Memory Alloys
    Kainuma, Ryosuke
    MATERIALS TRANSACTIONS, 2018, 59 (03) : 327 - 331
  • [36] Microstructural analysis and molecular dynamics modeling of shape memory alloys
    Yang, Chia-Wei
    Tsou, Nien-Ti
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 131 : 293 - 300
  • [37] Nanoscale design of Ni-Al shape memory alloys
    Subramaniyan, Arun K.
    Sun, C. T.
    NANOTECHNOLOGY, 2009, 20 (08)
  • [38] Asymptotic Self-Similarity of Minimizers and Local Bounds in a Model of Shape-Memory Alloys
    Conti, Sergio
    Diermeier, Johannes
    Koser, Melanie
    Zwicknagl, Barbara
    JOURNAL OF ELASTICITY, 2021, 147 (1-2) : 149 - 200
  • [39] In situ evaluation of the transformation behaviour of NiTi-based high temperature shape memory alloys
    Azeem, M. A.
    Dye, D.
    INTERMETALLICS, 2014, 46 : 222 - 230
  • [40] Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy
    Mazzer, E. M.
    Kiminami, C. S.
    Bolfarini, C.
    Cava, R. D.
    Botta, W. J.
    Gargarella, P.
    Audebert, F.
    Galano, M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 663 : 64 - 68