Almost compatible microstructures in shape memory alloys

被引:30
|
作者
Balandraud, X. [1 ]
Delpueyo, D. [2 ]
Grediac, M. [2 ]
Zanzotto, G. [3 ]
机构
[1] Univ Clermont Ferrand, Lab Mecan & Ingn, IFMA, F-63000 Clermont Ferrand, France
[2] Univ Clermont Ferrand, Lab Mecan & Ingn, Univ Blaise Pascal, F-63000 Clermont Ferrand, France
[3] Univ Padua, DMMMSA, I-35121 Padua, Italy
关键词
Martensitic phase transformation; Shape memory alloys (SMA); Microstructure; TRANSMISSION ELECTRON-MICROSCOPY; CU-AL-NI; MARTENSITIC TRANSFORMATIONS; PHASE-TRANSFORMATION; SINGLE-CRYSTALS; HYSTERESIS; TRANSITION; ENERGY; INTERFACE; AUSTENITE;
D O I
10.1016/j.actamat.2010.03.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coherent stress-free (CSF) microstructures with specific morphologies are favored in shape memory alloys (SMAs) when special relations are satisfied by the lattice parameters. Experimentally observed microstructures are, however, also formed at non-exact CSF conditions. Here we propose a framework for the investigation of almost compatible (i.e. non-perfectly CSF) twinned wedges in SMAs, and make a systematic study of these microstructures for two types of symmetry-breaking martensitic transformations. We determine the domains in lattice-parameter space wherein there exist, and coexist, different families of almost compatible wedges with low overall stress. We find these to be wide regions largely unrelated to the existence of special CSF relations, if any even exist, giving stress-free configurations. We propose SMA improvement can be obtained by targeting domains in lattice-parameter space wherein, besides satisfying other suitable properties, a maximum number of almost compatible microstructures can also form in the material. We develop this approach for wedges in SMAs undergoing the cubic-to-orthorhombic transformation (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
引用
收藏
页码:4559 / 4577
页数:19
相关论文
共 50 条
  • [21] Classification and analysis of trigonal martensite laminate twins in shape memory alloys
    Tsou, Nien-Ti
    Chen, Chih-Hsuan
    Chen, Chuin-Shan
    Wu, Shyi-Kaan
    ACTA MATERIALIA, 2015, 89 : 193 - 204
  • [22] A robust model of pseudoelasticity in shape memory alloys
    Stupkiewicz, S.
    Petryk, H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (07) : 747 - 769
  • [23] NiTiHf-based shape memory alloys
    Karaca, H. E.
    Acar, E.
    Tobe, H.
    Saghaian, S. M.
    MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (13A) : 1530 - 1544
  • [24] Oligocrystalline Shape Memory Alloys
    Ueland, Stian M.
    Chen, Ying
    Schuh, Christopher A.
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) : 2094 - 2099
  • [25] The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys
    Aydogdu, Y.
    Turabi, A. S.
    Kok, M.
    Aydogdu, A.
    Yakinci, Z. D.
    Aksan, M. A.
    Yakinci, M. E.
    Karaca, H. E.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 683 : 339 - 345
  • [26] Characterization on thermal hysteresis of shape memory alloys via macroscopic interface propagation
    Zhang, Chengguan
    Chen, Xue
    Hubert, Olivier
    He, Yongjun
    MATERIALIA, 2024, 33
  • [27] Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields
    Ozkul, Iskender
    Kurgun, Mehmet Ali
    Kalay, Ece
    Canbay, Canan Aksu
    Aldas, Kemal
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (12)
  • [28] Isothermal and athermal martensitic transformations in Ni-Ti shape memory alloys
    Kustov, S.
    Salas, D.
    Cesari, E.
    Santamarta, R.
    Van Humbeeck, J.
    ACTA MATERIALIA, 2012, 60 (6-7) : 2578 - 2592
  • [29] Twinning stress in shape memory alloys: Theory and experiments
    Wang, J.
    Sehitoglu, H.
    ACTA MATERIALIA, 2013, 61 (18) : 6790 - 6801
  • [30] A sharp interface evolutionary model for shape memory alloys
    Knuepfer, Hans
    Kruzik, Martin
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (11): : 1347 - 1355