Eco-friendly construction of oil collector with superhydrophobic coating for efficient oil layer sorption and oil-in-water emulsion separation

被引:23
作者
Wang, Jintao [1 ]
Wang, Hongfei [2 ]
机构
[1] North Minzu Univ, Coll Mat Sci & Engn, Yinchuan 750021, Peoples R China
[2] Suzhou Wuwei Environm Technol Co Ltd, Suzhou 215100, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Dip coating; Calcium stearate; Superhydrophobic; Cotton fabric; Oil collector; Emulsion separation; OIL/WATER SEPARATION; SELECTIVE SORPTION; HIGHLY EFFICIENT; POROUS MATERIALS; SPILL CLEANUP; KAPOK FIBER; FLY-ASH; FABRICATION; MEMBRANE; REMOVAL;
D O I
10.1016/j.surfcoat.2018.07.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we present an environmentally friendly oil collector for the separation and collection of the oils from water. The collector was designed via the filling of oleophilic-hydrophobic kapok fiber in a super hydrophobic fabric bag. The superhydrophobic fabric was fabricated via a facile, cost-effective, and scalable one-step dipping approach, which possess high oil/water separation efficiency for a series of oil/water mixtures with different volume ratio of oil to water. The as-prepared collector can absorb various oil layers from water into the pores of kapok fiber assembly while repelling water absolutely because of the superhydrophobicity of the fabric. The collector also exhibits high sorption capacity, fast sorption rate, and good recyclability. Furthermore, the oil sorption capability of the collector can be regulated through changing fiber filling density based on actual situation. More importantly, the fabricated collector with high fiber filling density (> 0.3 g) can be able to separate oil droplets from oil-in-water emulsion with a separation efficiency of over 98.9%. Therefore, the findings in the present study may offer an environment friendly, inexpensive, and easily-operated approach for the efficient separation of oil layer and oil droplets from water.
引用
收藏
页码:234 / 244
页数:11
相关论文
共 50 条
  • [31] Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation
    Feng, Lidong
    Gao, Yue
    Dai, Zhenguo
    Dan, Hongbing
    Xiao, Fang
    Yue, Qinyan
    Gao, Baoyu
    Wang, Shuguang
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 415
  • [32] Superhydrophobic/superoleophilic corn straw as an eco-friendly oil sorbent for the removal of spilled oil
    Xuefei Tan
    Hui-Min David Wang
    Deli Zang
    Lijun Wu
    Feng Liu
    Guoliang Cao
    Yongping Xu
    Shih-Hsin Ho
    Clean Technologies and Environmental Policy, 2021, 23 : 145 - 152
  • [33] One-step fabrication of eco-friendly superhydrophobic fabrics for high-efficiency oil/water separation and oil spill cleanup
    Yu, Haiyang
    Wu, Min
    Duan, Gaigai
    Gong, Xiao
    NANOSCALE, 2022, 14 (04) : 1296 - 1309
  • [34] A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions
    Gong, Li
    Zhu, Hongxia
    Wu, Wenhao
    Lin, Daohui
    Yang, Kun
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 425
  • [35] Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion
    Li, Meng
    Bian, Cheng
    Yang, Guoxin
    Qiang, Xihuai
    CHEMICAL ENGINEERING JOURNAL, 2019, 368 : 350 - 358
  • [36] Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil-water separation
    Bai, Weibin
    Lin, Haimen
    Chen, Kunhui
    Xu, Jie
    Chen, Jipeng
    Zhang, Xinmei
    Zeng, Renping
    Lin, Jinhuo
    Xu, Yanlian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 253
  • [37] Electrospun composite membrane with superhydrophobic-superoleophilic for efficient water-in-oil emulsion separation and oil adsorption
    Zhang, Taiheng
    Zhang, Chongyang
    Zhao, Guoqing
    Li, Caifeng
    Liu, Lukai
    Yu, Jingang
    Jiao, Feipeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 602 (602)
  • [38] An eco-friendly and facile method for oil-water separation using the bio-Zn oxide-based superhydrophobic membrane
    Beagan, A.
    Elakany, A. S.
    Yang, Z.
    Mohamed, M. E.
    WATER SCIENCE AND TECHNOLOGY, 2024, 89 (09) : 2512 - 2522
  • [39] A universal strategy for efficient separation from single emulsion separation to oil-in-water and water-in-oil mixed emulsions
    Xiang, Qian
    Liu, Yan
    Wang, Bo
    Huang, Chengyi
    Wang, Lilin
    He, Jinsong
    Tian, Dong
    Shen, Fei
    Zhang, Yanzong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [40] Superhydrophobic/superlipophilic interface layer for oil-water separation
    Xiao, Fei
    Zhang, Hongxia
    Wu, Tianzhao
    Liu, Jiahao
    Liu, Jianxin
    Zhang, Jiangbo
    Liu, Wei
    Liang, Taixin
    Hu, Jinghui
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 161 : 13 - 21