Chip-to-chip quantum photonic interconnect by path-polarization interconversion

被引:128
|
作者
Wang, Jianwei [1 ,2 ]
Bonneau, Damien [1 ,2 ]
Villa, Matteo [1 ,2 ,3 ]
Silverstone, Joshua W. [1 ,2 ]
Santagati, Raffaele [1 ,2 ]
Miki, Shigehito [4 ]
Yamashita, Taro [4 ]
Fujiwara, Mikio [5 ]
Sasaki, Masahide [5 ]
Terai, Hirotaka [4 ]
Tanner, Michael G. [6 ]
Natarajan, Chandra M. [6 ]
Hadfield, Robert H. [6 ]
O'Brien, Jeremy L. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Ctr Quantum Photon, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[3] Politecn Milan, Dipart Fis, IFN, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Natl Inst Informat & Commun Technol NICT, 588-2 Iwaoka, Kobe, Hyogo 6512492, Japan
[5] Natl Inst Informat & Commun Technol NICT, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
[6] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
来源
OPTICA | 2016年 / 3卷 / 04期
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
ENTANGLEMENT DISTRIBUTION; WAVE-GUIDES; TELEPORTATION; COMPACT; INEQUALITY; DETECTORS; VIOLATION; QUBITS;
D O I
10.1364/OPTICA.3.000407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrated photonics has enabled much progress toward quantum technologies. Many applications, e.g., quantum communication, sensing, and distributed cloud quantum computing, require coherent photonic interconnection between separate on-chip subsystems. Large-scale quantum computing architectures and systems may ultimately require quantum interconnects to enable scaling beyond the limits of a single wafer, and toward multi-chip systems. However, coherently connecting separate chips remains a challenge, due to the fragility of entangled quantum states. The distribution and manipulation of entanglement between multiple integrated devices is one of the strictest requirements of these systems. Here, we report, to the best of our knowledge, the first quantum photonic interconnect, demonstrating high-fidelity entanglement distribution and manipulation between two separate photonic chips, implemented using state-of-the-art silicon photonics. Path-entangled states are generated on one chip, and distributed to another chip by interconverting between path and polarization degrees of freedom, via a two-dimensional grating coupler on each chip. This path-to-polarization conversion allows entangled quantum states to be coherently distributed. We use integrated state analyzers to confirm a Bell-type violation of S = 2.638 +/- 0.039 between the two chips. With further improvements in loss, this quantum photonic interconnect will provide new levels of flexibility in quantum systems and architectures. (C) 2016 Optical Society of America
引用
收藏
页码:407 / 413
页数:7
相关论文
共 50 条
  • [1] Polymer forms chip-to-chip interconnect
    DeGroot, JV
    LASER FOCUS WORLD, 2005, 41 (05): : 11 - 11
  • [2] Chip-to-chip interconnect integration technologies
    Zia, Muneeb
    Zhang, Chaoqi
    Yang, Hyun Suk
    Zheng, Li
    Bakir, Muhannad
    IEICE ELECTRONICS EXPRESS, 2016, 13 (06):
  • [3] Path-polarization hyperentangled and cluster states of photons on a chip
    Mario Arnolfo Ciampini
    Adeline Orieux
    Stefano Paesani
    Fabio Sciarrino
    Giacomo Corrielli
    Andrea Crespi
    Roberta Ramponi
    Roberto Osellame
    Paolo Mataloni
    Light: Science & Applications, 2016, 5 : e16064 - e16064
  • [4] Path-polarization hyperentangled and cluster states of photons on a chip
    Ciampini, Mario Arnolfo
    Orieux, Adeline
    Paesani, Stefano
    Sciarrino, Fabio
    Corrielli, Giacomo
    Crespi, Andrea
    Ramponi, Roberta
    Osellame, Roberto
    Mataloni, Paolo
    LIGHT-SCIENCE & APPLICATIONS, 2016, 5 : e16064 - e16064
  • [5] Coding schemes for chip-to-chip interconnect applications
    Farzan, Kamran
    Johns, David A.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2006, 14 (04) : 393 - 406
  • [6] Development of a chip-to-chip optical interconnect system
    Mu, Jianwei
    Ragunathan, Vivek
    Zhang, Lin
    Okamoto, Shintaro
    Kimerling, Lionel C.
    Michel, Jurgen
    2013 IEEE OPTICAL INTERCONNECTS CONFERENCE, 2013, : 116 - +
  • [7] Terabus: a chip-to-chip parallel optical interconnect
    Kash, JA
    Doany, F
    Kuchta, D
    Pepeljugoski, P
    Schares, L
    Schaub, J
    Schow, C
    Trewhella, J
    Baks, C
    Kwark, Y
    Schuster, C
    Shan, L
    Patel, C
    Tsang, C
    Rosner, J
    Libsch, F
    Budd, R
    Chiniwalla, P
    Guckenberger, D
    Kucharski, D
    Dangel, R
    Offrein, B
    Tan, M
    Trott, G
    Lin, D
    Tandon, A
    Nystrom, M
    2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 2005, : 362 - 363
  • [8] On chip analysis of path-polarization hyperentangled cluster photon states
    Ciampini, M. A.
    Orieux, A.
    Paesani, S.
    Vigliar, C.
    Cimini, V.
    Corrielli, G.
    Crespi, A.
    Ramponi, R.
    Osellame, R.
    Paternostro, M.
    Barbieri, M.
    Mataloni, P.
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION X, 2017, 10118
  • [9] Square dielectric interconnect for chip-to-chip THz communication
    Aflakian, N.
    LaFave, T., Jr.
    Henderson, R. M.
    O, K. K.
    MacFarlane, D. L.
    PROCEEDINGS OF THE 2017 TEXAS SYMPOSIUM ON WIRELESS AND MICROWAVE CIRCUITS AND SYSTEMS (WMCS), 2017,
  • [10] High-speed flex chip-to-chip interconnect
    Braunisch, Henning
    Jaussi, James E.
    Mix, Jason A.
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING, 2006, : 273 - +