Chip-to-chip quantum photonic interconnect by path-polarization interconversion

被引:137
作者
Wang, Jianwei [1 ,2 ]
Bonneau, Damien [1 ,2 ]
Villa, Matteo [1 ,2 ,3 ]
Silverstone, Joshua W. [1 ,2 ]
Santagati, Raffaele [1 ,2 ]
Miki, Shigehito [4 ]
Yamashita, Taro [4 ]
Fujiwara, Mikio [5 ]
Sasaki, Masahide [5 ]
Terai, Hirotaka [4 ]
Tanner, Michael G. [6 ]
Natarajan, Chandra M. [6 ]
Hadfield, Robert H. [6 ]
O'Brien, Jeremy L. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Ctr Quantum Photon, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[3] Politecn Milan, Dipart Fis, IFN, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Natl Inst Informat & Commun Technol NICT, 588-2 Iwaoka, Kobe, Hyogo 6512492, Japan
[5] Natl Inst Informat & Commun Technol NICT, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
[6] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT DISTRIBUTION; WAVE-GUIDES; TELEPORTATION; COMPACT; INEQUALITY; DETECTORS; VIOLATION; QUBITS;
D O I
10.1364/OPTICA.3.000407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrated photonics has enabled much progress toward quantum technologies. Many applications, e.g., quantum communication, sensing, and distributed cloud quantum computing, require coherent photonic interconnection between separate on-chip subsystems. Large-scale quantum computing architectures and systems may ultimately require quantum interconnects to enable scaling beyond the limits of a single wafer, and toward multi-chip systems. However, coherently connecting separate chips remains a challenge, due to the fragility of entangled quantum states. The distribution and manipulation of entanglement between multiple integrated devices is one of the strictest requirements of these systems. Here, we report, to the best of our knowledge, the first quantum photonic interconnect, demonstrating high-fidelity entanglement distribution and manipulation between two separate photonic chips, implemented using state-of-the-art silicon photonics. Path-entangled states are generated on one chip, and distributed to another chip by interconverting between path and polarization degrees of freedom, via a two-dimensional grating coupler on each chip. This path-to-polarization conversion allows entangled quantum states to be coherently distributed. We use integrated state analyzers to confirm a Bell-type violation of S = 2.638 +/- 0.039 between the two chips. With further improvements in loss, this quantum photonic interconnect will provide new levels of flexibility in quantum systems and architectures. (C) 2016 Optical Society of America
引用
收藏
页码:407 / 413
页数:7
相关论文
共 60 条
[1]   Entanglement estimation from Bell inequality violation [J].
Bartkiewicz, Karol ;
Horst, Bohdan ;
Lemr, Karel ;
Miranowicz, Adam .
PHYSICAL REVIEW A, 2013, 88 (05)
[2]   Demonstration of Blind Quantum Computing [J].
Barz, Stefanie ;
Kashefi, Elham ;
Broadbent, Anne ;
Fitzsimons, Joseph F. ;
Zeilinger, Anton ;
Walther, Philip .
SCIENCE, 2012, 335 (6066) :303-308
[3]   Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J].
Bogaerts, W ;
Baets, R ;
Dumon, P ;
Wiaux, V ;
Beckx, S ;
Taillaert, D ;
Luyssaert, B ;
Van Campenhout, J ;
Bienstman, P ;
Van Thourhout, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :401-412
[4]   Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits [J].
Bonneau, D. ;
Engin, E. ;
Ohira, K. ;
Suzuki, N. ;
Yoshida, H. ;
Iizuka, N. ;
Ezaki, M. ;
Natarajan, C. M. ;
Tanner, M. G. ;
Hadfield, R. H. ;
Dorenbos, S. N. ;
Zwiller, V. ;
O'Brien, J. L. ;
Thompson, M. G. .
NEW JOURNAL OF PHYSICS, 2012, 14
[5]   Integrated Compact Optical Vortex Beam Emitters [J].
Cai, Xinlun ;
Wang, Jianwei ;
Strain, Michael J. ;
Johnson-Morris, Benjamin ;
Zhu, Jiangbo ;
Sorel, Marc ;
O'Brien, Jeremy L. ;
Thompson, Mark G. ;
Yu, Siyuan .
SCIENCE, 2012, 338 (6105) :363-366
[6]   Universal linear optics [J].
Carolan, Jacques ;
Harrold, Christopher ;
Sparrow, Chris ;
Martin-Lopez, Enrique ;
Russell, Nicholas J. ;
Silverstone, Joshua W. ;
Shadbolt, Peter J. ;
Matsuda, Nobuyuki ;
Oguma, Manabu ;
Itoh, Mikitaka ;
Marshall, Graham D. ;
Thompson, Mark G. ;
Matthews, Jonathan C. F. ;
Hashimoto, Toshikazu ;
O'Brien, Jeremy L. ;
Laing, Anthony .
SCIENCE, 2015, 349 (6249) :711-716
[7]   Distributed quantum computation over noisy channels [J].
Cirac, JI ;
Ekert, AK ;
Huelga, SF ;
Macchiavello, C .
PHYSICAL REVIEW A, 1999, 59 (06) :4249-4254
[8]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[9]   Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators [J].
Clemmen, S. ;
Huy, K. Phan ;
Bogaerts, W. ;
Baets, R. G. ;
Emplit, Ph. ;
Massar, S. .
OPTICS EXPRESS, 2009, 17 (19) :16558-16570
[10]   Measuring protein concentration with entangled photons [J].
Crespi, Andrea ;
Lobino, Mirko ;
Matthews, Jonathan C. F. ;
Politi, Alberto ;
Neal, Chris R. ;
Ramponi, Roberta ;
Osellame, Roberto ;
O'Brien, Jeremy L. .
APPLIED PHYSICS LETTERS, 2012, 100 (23)