Variational iteration method for solving cubic nonlinear Schrodinger equation

被引:29
作者
Sweilam, N. H. [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
关键词
cubic nonlinear schrodinger equation; variational iteration method;
D O I
10.1016/j.cam.2006.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variational iteration method is applied to solve the cubic nonlinear Schrodinger (CNLS) equation in one and two space variables. In both cases, we will reduce the CNLS equation to a coupled system of nonlinear equations. Numerical experiments are made to verify the efficiency of the method. Comparison with the theoretical solution shows that the variational iteration method is of high accuracy. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 23 条
[1]   New applications of variational iteration method [J].
Abdou, MA ;
Soliman, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 211 (1-2) :1-8
[2]  
ABDOU MA, 2004, J COMPUT APPL MATH, P1
[3]  
Ablowitz MJ., 2005, Bull. New Ser. Am. Math. Soc, V43, P127, DOI [10.1090/S0273-0979-05-01074-8, DOI 10.1090/S0273-0979-05-01074-8]
[4]   AN ENGINEERS GUIDE TO SOLITON PHENOMENA - APPLICATION OF THE FINITE-ELEMENT METHOD [J].
ARGYRIS, J ;
HAASE, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :71-122
[5]   Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrodinger equation [J].
Carter, JD ;
Deconinck, B .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 214 (01) :42-54
[6]  
Draganescu GE, 2005, J OPTOELECTRON ADV M, V7, P877
[7]  
Draganescu GE, 2003, INT J NONLIN SCI NUM, V4, P219, DOI 10.1515/IJNSNS.2003.4.3.219
[8]   On the numerical solution of the system of two-dimensional Burgers' equations by the decomposition method [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (01) :101-109
[9]  
FAMELIS T, SOLUTION CUBIC SCHRO
[10]   New singular solutions of the nonlinear Schrodinger equation [J].
Fibich, G ;
Gavisha, N ;
Wang, XP .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 211 (3-4) :193-220