The density of the strong symmetric genus values of p-groups

被引:0
|
作者
May, Coy L. [1 ]
Zimmerman, Jay [1 ]
机构
[1] Towson Univ, Dept Math, Baltimore, MD 21252 USA
关键词
Density; p-group; Riemann surface; strong symmetric genus; ORDER P(M); SURFACES; CONTAIN;
D O I
10.1080/00927872.2017.1278766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. The strong symmetric genus sigma(0)(G) is the minimum genus of any Riemann surface on which G acts faithfully and preserving orientation. Let p a prime, and let J(p) be the set of integers g for which there is a p-group of strong symmetric genus g. We show that the set J(p) has density zero in the set of positive integers.
引用
收藏
页码:4730 / 4739
页数:10
相关论文
共 50 条
  • [31] The Roquette category of finite p-groups
    Bouc, Serge
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) : 2843 - 2886
  • [32] Nondiscrete P-groups can be reflexive
    Galindo, Jorge
    Recoder-Nunez, Luis
    Tkachenko, Mikhail
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (02) : 194 - 203
  • [33] THE SYMMETRIC GENUS OF 2-GROUPS
    May, Coy L.
    Zimmerman, Jay
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (01) : 9 - 21
  • [34] The symmetric genus spectrum of finite groups
    Conder, Marston D. E.
    Tucker, Thomas W.
    ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (02) : 271 - 289
  • [35] Extensions and the induced characters of cyclic p-groups
    Sekiguchi, Katsusuke
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (11) : 3611 - 3623
  • [36] Zeros of irreducible characters of metabelian p-groups
    Wilde, Tom
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2019, 141 : 9 - 18
  • [37] Abelian quasinormal subgroups of finite p-groups
    Cossey, John
    Stonehewer, Stewart
    JOURNAL OF ALGEBRA, 2011, 326 (01) : 113 - 121
  • [38] Counting maximal abelian subgroups of p-groups
    Isaacs, I. M.
    Yanovski, Lior
    ARCHIV DER MATHEMATIK, 2022, 119 (01) : 1 - 9
  • [39] Finite p-groups with few normal subgroups
    Silberberg, G
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2000, 7 (03) : 365 - 376
  • [40] Lie algebras and higher torsion in p-groups
    Pakianathan, Jonathan
    Rogers, Nicholas F.
    JOURNAL OF ALGEBRA, 2013, 385 : 192 - 240