Sharp inequalities for trigonometric sums

被引:15
作者
Alzer, H [1 ]
Koumandos, S [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
D O I
10.1017/S0305004102006357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following two theorems: (I) Let n greater than or equal to I be a (fixed) integer. Then we have for theta is an element of (0, pi): Sigma(k=0)(n) cos(ktheta)/k less than or equal to -log(sin(theta/2)) + pi-theta/2 + sigma(n), with the best possible constant sigma(n) = Sigma(k=1)(n)(-1)(k)/k. (II) For even integers n greater than or equal to 2 and for theta is an element of (0, pi) we have Sigma(k=1)(n) sin(ktheta)/k less than or equal to alpha(pi-theta), with the best possible constant alpha = 0.66395.... Our results refine inequalities due to C. Hylten-Cavallius [11] and P. Turan [23], respectively.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 24 条
[1]  
ALZER H, 1992, TAMKANG J MATH, V23, P161
[2]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[3]  
ASKEY RA, 1975, REGIONAL C SERIES AP, V21
[4]   POSITIVITY OF SOME BASIC COSINE SUMS [J].
BROWN, G ;
WANG, KY ;
WILSON, DC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 :383-391
[5]   A new bound for the Fejer-Jackson sum [J].
Brown, G ;
Koumandos, S .
ACTA MATHEMATICA HUNGARICA, 1998, 80 (1-2) :21-30
[6]   An extension of the Fejer-Jackson inequality [J].
Brown, G ;
Wang, KY .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1997, 62 :1-12
[7]   A CLASS OF POSITIVE TRIGONOMETRIC SUMS [J].
BROWN, G ;
HEWITT, E .
MATHEMATISCHE ANNALEN, 1984, 268 (01) :91-122
[8]   On a monotonic trigonometric sum [J].
Brown, G ;
Koumandos, S .
MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02) :109-119
[9]  
Dieudonne J. A., 1931, Ann. Sci. Ec. Norm. Super, V48, P247
[10]  
Fejer L., 1928, MONATSH MATH PHYS, V35, P305