Necessary and Sufficient Stability Condition by Finite Number of Mathematical Operations for Time-delay Systems of Neutral Type

被引:20
作者
Gomez, Marco A. [1 ]
Egorov, Alexey V. [2 ]
Mondie, Sabine [3 ]
机构
[1] Univ Guanajuato, Dept Mech Engn, Campus Irapuato Salamanca, Guanajuato 36885, Mexico
[2] St Petersburg State Univ, St Petersburg 199034, Russia
[3] CINVESTAV IPN, Dept Automat Control, Mexico City 07360, DF, Mexico
关键词
Delays; Stability criteria; Symmetric matrices; Eigenvalues and eigenfunctions; Control theory; Delay Lyapunov matrix; necessary and sufficient stability condition; time-delay systems; LYAPUNOV-KRASOVSKII FUNCTIONALS; IMAGINARY AXIS EIGENVALUES; STABILIZATION; COMPUTATION; PARAMETERS;
D O I
10.1109/TAC.2020.3008392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new necessary and sufficient condition of exponential stability of neutral-type linear time invariant (LTI) systems with one delay. The new stability criterion is given in terms of a block matrix, which exclusively depends on the delay Lyapunov matrix and is of finite dimension.
引用
收藏
页码:2802 / 2808
页数:7
相关论文
共 38 条
[1]   Stability of neutral type delay systems: A joint Lyapunov-Krasovskii and Razumikhin approach [J].
Alexandrova, Irina V. ;
Zhabko, Alexey P. .
AUTOMATICA, 2019, 106 :83-90
[2]   New robustness bounds for neutral type delay systems via functionals with prescribed derivative [J].
Alexandrova, Irina V. .
APPLIED MATHEMATICS LETTERS, 2018, 76 :34-39
[3]  
[Anonymous], 1963, Differential-Difference Equations
[4]   Stability with respect to the delay: On a paper of K.L. Cooke and P. van den Driessche [J].
Boese, FG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (02) :293-321
[5]   Passivity-based PI control of first-order systems with I/O communication delays: a frequency domain analysis [J].
Castanos, Fernando ;
Estrada, Edgar ;
Mondie, Sabine ;
Ramirez, Adrian .
INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (11) :2549-2562
[6]   LIAPUNOV FUNCTIONAL FOR A MATRIX NEUTRAL DIFFERENCE-DIFFERENTIAL EQUATION WITH ONE DELAY [J].
CASTELAN, WB ;
INFANTE, EF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) :105-130
[7]   ON COMPUTING THE MAXIMAL DELAY INTERVALS FOR STABILITY OF LINEAR DELAY SYSTEMS [J].
CHEN, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (06) :1087-1093
[8]   Necessary stability conditions for linear delay systems [J].
Egorov, Alexey V. ;
Mondie, Sabine .
AUTOMATICA, 2014, 50 (12) :3204-3208
[9]   New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems [J].
Fridman, E .
SYSTEMS & CONTROL LETTERS, 2001, 43 (04) :309-319
[10]  
Fridman E., 2014, Systems & control: foundations & applications, Introduction to time-delay systems, DOI DOI 10.1007/978-3-319-09393-2