Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors

被引:65
作者
Dong, Shu [1 ]
Song, Yali [1 ]
Fang, Yongzheng [1 ]
Zhu, Kai [1 ]
Ye, Ke [1 ]
Gao, Yinyi [1 ]
Yan, Jun [1 ]
Wang, Guiling [1 ]
Cao, Dianxue [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Potassium-ion capacitors; Graphene; Green reducing agent; Carbon dots; Electrochemical performance; POROUS CARBON; PERFORMANCE; LITHIUM; REDUCTION; ELECTRODE; STORAGE; ANODE;
D O I
10.1016/j.carbon.2021.02.094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potassium ion batteries or capacitors are a promising technology for large-scale energy storage due to the abundant resource and low cost of potassium. However, the development of stable electrode materials with high capacity, capable rate ability, and excellent cycling stability remains a challenge. Herein, carbon dots modified reduced graphene oxides (LAP-rGO-CDs) are designed and synthesized via a rapid and green microwave-assisted method with L-Ascorbic acid 6-palmitate (LAP) as the reducing agent. LAP-rGO-CDs present enlarged interlayer spacing and faster ion transfer rate owing to the introducing of carbon dots. Serving as a potassium ion battery electrode, LAP-rGO-CDs showed a high specific capacity of 299 mAh g(-1) at 1 A g(-1) and excellent cycling stability. Moreover, a LAP-rGO-CDs//AC full carbon-based potassium ion capacitor is assembled and displays a maximum energy density of 119 Wh kg(-1) and a power density of 5352 W kg(-1). This work demonstrates the potential application of LAP-rGO-CDs for high-performance potassium ion storage. (C) 2021 Published by Elsevier Ltd.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 48 条
[1]   Doping-Induced Tunable Wettability and Adhesion of Graphene [J].
Ashraf, Ali ;
Wu, Yanbin ;
Wang, Michael Cai ;
Yong, Keong ;
Sun, Tao ;
Jing, Yuhang ;
Haasch, Richard T. ;
Aluru, Narayana R. ;
Nam, SungWoo .
NANO LETTERS, 2016, 16 (07) :4708-4712
[2]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[3]   Ti3C2Tx-Based Three-Dimensional Hydrogel by a Graphene Oxide-Assisted Self-Convergence Process for Enhanced Photoredox Catalysis [J].
Chen, Yan ;
Xie, Xiuqiang ;
Xin, Xin ;
Tang, Zi-Rong ;
Xu, Yi-Jun .
ACS NANO, 2019, 13 (01) :295-304
[4]   Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage [J].
Chong, Shaokun ;
Sun, Lan ;
Shu, Chengyong ;
Guo, Shengwu ;
Liu, Yongning ;
Wang, Wei ;
Liu, Hua Kun .
NANO ENERGY, 2019, 63
[5]   Chemical reduction of graphene oxide using green reductants [J].
De Silva, K. K. H. ;
Huang, H. -H. ;
Joshi, R. K. ;
Yoshimura, M. .
CARBON, 2017, 119 :190-199
[6]   A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device [J].
Fan, Ling ;
Lin, Kairui ;
Wang, Jue ;
Ma, Ruifang ;
Lu, Bingan .
ADVANCED MATERIALS, 2018, 30 (20)
[7]   Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis [J].
Feng, Tanglue ;
Tao, Songyuan ;
Yue, Da ;
Zeng, Qingsen ;
Chen, Weihua ;
Yang, Bai .
SMALL, 2020, 16 (31)
[8]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[9]   Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids [J].
Fu, Jie ;
Shi, Fan ;
Thompson, L. T., Jr. ;
Lu, Xiuyang ;
Savage, Phillip E. .
ACS CATALYSIS, 2011, 1 (03) :227-231
[10]   Catalytic hydrothermal deoxygenation of palmitic acid [J].
Fu, Jie ;
Lu, Xiuyang ;
Savage, Phillip E. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (03) :311-317