Spectral shifts of partially coherent radial array beams passing through ABCD optical systems

被引:5
作者
Pan, Leilei [1 ]
Zhang, Bin [1 ]
机构
[1] Sichuan Univ, Coll Elect Informat, Chengdu 610064, Peoples R China
关键词
Spectral shift; The correlated superposition; The uncorrelated superposition; Partially coherent radial array beams; ABCD optical systems; Spectral switch; MULTI-GAUSSIAN BEAMS; SCHELL-MODEL BEAMS; LASER ARRAY; TURBULENT ATMOSPHERE; PROPAGATION; COMBINATION; REDSHIFTS; LIGHT; LINES; LENS;
D O I
10.1016/j.optcom.2010.01.027
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The expressions for the spectral intensity of partially coherent Gaussian Schell-model (GSM) radial array beams for both the correlated and uncorrelated superpositions passing through ABCD optical systems have been derived by using the extended Huygens-Fresnel diffraction integral. The effects of the normalized radius R, the number of beamlets N. the spatial coherent parameter of array beamlets beta and the optical system parameters on the on-axis and off-axis relative spectral shifts for the two types of superposition have been discussed in detail. The results show that for the correlated superposition, the on-axis spectral intensity in free space and the off-axis spectral intensity on the geometrical focal plane depends on the source spectral density S-0(omega), the spatial coherent parameter of array beamlets beta, the generalized Fresnel number of the system F, the normalized radius R and the number of beamlets N, whereas the spectral intensity for the uncorrelated superposition is independent of the number of beamlets N. Furthermore, as for on the actual focal plane, the off-axis spectral intensity for the two types of superposition is closely related to N. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2193 / 2201
页数:9
相关论文
共 35 条
[1]   SPECTRUM OF PARTIALLY COHERENT-LIGHT - TRANSITION FROM NEAR TO FAR ZONE [J].
AGRAWAL, GP ;
GAMLIEL, A .
OPTICS COMMUNICATIONS, 1990, 78 (01) :1-6
[2]  
Cai Y, 2007, APPL PHYS B-LASERS O, V88, P467, DOI [10.1007/s00340-007-2680-0, 10.1007/S00340-007-2680-0]
[3]  
Cai YJ, 2002, OPT COMMUN, V204, P17, DOI 10.1016/S0030-4018(02)01206-3
[4]   Phase-locking of a multi-channel radial array CO2 laser [J].
Chen, Liang ;
Li, Yude ;
Jia, Kai ;
Pan, Wei .
OPTICS AND LASER TECHNOLOGY, 2010, 42 (02) :296-300
[5]  
Cook JR, 1997, P SOC PHOTO-OPT INS, V2988, P264, DOI 10.1117/12.274390
[6]  
DALILESSAKALI L, 2001, PHYS CHEM NEWS, V1, P57
[7]   A 13.3-W laser-diode-array end-pumped Nd:GdVO4 continuous-wave laser at 1.34 μm [J].
Du, C ;
Ruan, S ;
Zhang, H ;
Yu, Y ;
Zeng, F ;
Wang, J ;
Jiang, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 80 (01) :45-48
[8]   Propagation characteristics of stochastic electromagnetic array beams [J].
Du, X. ;
Zhao, D. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (04) :901-905
[9]   Statistical properties of correlated radial stochastic electromagnetic array beams on propagation [J].
Du, Xinyue ;
Zhao, Daomu .
OPTICS COMMUNICATIONS, 2009, 282 (10) :1993-1997
[10]  
ERDELUYI A, 1954, TABLES INTEGRAL TRAN