Extreme eigenvalues of nonregular graphs

被引:38
作者
Cioaba, Sebastian M. [1 ]
Gregory, David A.
Nikiforov, Vladimir
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
加拿大自然科学与工程研究理事会;
关键词
spectral radius; nonregular graph; eigenvalues;
D O I
10.1016/j.jctb.2006.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(1) be the greatest eigenvalue and lambda(n) the least eigenvalue of the adjacency matrix of a connected graph G with n vertices, m edges and diameter D. We prove that if G is nonregular, then [GRAPH] where A is the maximum degree of G. The inequality improves previous bounds of Stevanovic and of Zhang. It also implies that a lower bound on lambda(n) obtained by Alon and Sudakov for (possibly regular) connected nonbipartite graphs also holds for connected nonregular graphs. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:483 / 486
页数:4
相关论文
共 4 条
[1]   Bipartite subgraphs and the smallest eigenvalue [J].
Alon, N ;
Sudakov, B .
COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (01) :1-12
[2]  
Godsil C., 2001, ALGEBRAIC GRAPH THEO
[3]   The largest eigenvalue of nonregular graphs [J].
Stevanovic, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) :143-146
[4]   Eigenvectors and eigenvalues of non-regular graphs [J].
Zhang, XD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 :79-86