Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications

被引:23
作者
Flandoli, F
Lisei, H
机构
[1] Univ Pisa, Dept Appl Math, I-56126 Pisa, Italy
[2] Univ Babes Bolyai, Fac Math & Comp Sci, R-3400 Cluj Napoca, Romania
关键词
nonlinear stochastic partial differential equation; monotone and coercive operator; stochastic flow; cocycle; random attractor;
D O I
10.1081/sap-200029481
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to transform a nonlinear stochastic partial differential equation of parabolic type with multiplicative noise into a random partial differential equation by using a bijective random process. A stationary conjugation is constructed, which is of interest for asymptotic problems. The conjugation is used here to prove the existence of the stochastic flow, the perfect cocycle property and the existence of the random attractor, all nontrivial properties in the case of multiplicative noise.
引用
收藏
页码:1385 / 1420
页数:36
相关论文
共 23 条
[1]  
[Anonymous], 1990, LINEAR MONOTONE OPER
[2]   PERFECT COCYCLES THROUGH STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
ARNOLD, L ;
SCHEUTZOW, M .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (01) :65-88
[3]  
Arnold L., 1998, Springer Monographs in Mathematics
[4]  
Bonaccorsi S, 2002, PROG PROBAB, V52, P33
[5]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[6]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[7]   SOME RESULTS ON LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACES. [J].
Da Prato, G. ;
Iannelli, M. ;
Tubaro, L. .
Stochastics, 1982, 6 (02) :105-116
[8]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[9]  
Flandoli F., 1996, STOCH STOCH REP, V59, P21
[10]  
FLANDOLI F, 1995, REGULARITY THEORY ST