Lipschitz functions with maximal Clarke subdifferentials are generic

被引:15
作者
Borwein, JM [1 ]
Wang, XF [1 ]
机构
[1] Simon Fraser Univ, Dept Math & Stat, Ctr Expt & Construct Math, Burnaby, BC V5A 1S6, Canada
关键词
Lipschitz function; Clarke subdifferential; separable Banach spaces; Baire category; partial ordering; Banach lattice; approximate subdifferential;
D O I
10.1090/S0002-9939-00-05914-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that on a separable Banach space most Lipschitz functions have maximal Clarke subdifferential mappings. In particular, the generic nonexpansive function has the dual unit ball as its Clarke subdifferential at every point. Diverse corollaries are given.
引用
收藏
页码:3221 / 3229
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1975, GEOMETRIC FUNCTIONAL
[2]  
[Anonymous], 1974, TOPOLOGY NORMED SPAC
[3]   Essentially smooth Lipschitz functions [J].
Borwein, JM ;
Moors, WB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 149 (02) :305-351
[4]   Lipschitz functions with prescribed derivatives and subderivatives [J].
Borwein, JM ;
Moors, WB ;
Wang, XF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (01) :53-63
[5]  
BORWEIN JM, 1995, P OPTIMIZATION MINIC, V2, P61
[6]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[7]  
Diestel J., 1984, SEQUENCES SERIES BAN
[8]   APPROXIMATE SUBDIFFERENTIALS AND APPLICATIONS .3. THE METRIC THEORY [J].
IOFFE, AD .
MATHEMATIKA, 1989, 36 (71) :1-38
[10]   FUNCTIONS WITH CONSTANT GENERALIZED-GRADIENTS [J].
JOUINI, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 148 (01) :121-130