Semilinear pseudodifferential equations in spaces of tempered ultradistributions

被引:6
作者
Cappiello, Marco [1 ]
Pilipovic, Stevan [2 ]
Prangoski, Bojan [3 ]
机构
[1] Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
[3] Univ Ss Cyril & Methodius, Dept Math, Fac Mech Engn, Skopje, Macedonia
关键词
Tempered ultradistributions; Pseudodifferential operators; Semilinear equations; EXPONENTIAL DECAY; HOLOMORPHIC EXTENSIONS; REGULARITY; OPERATORS; THEOREMS;
D O I
10.1016/j.jmaa.2016.04.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of semilinear elliptic equations on spaces of temperedultradistributions of Beurling and Roumieu type. Assuming that the linear part of the equation is a pseudodifferential operator of infinite order satisfying a suitable ellipticity condition we prove a regularity result in the functional setting above for weak Sobolev type solutions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 25 条