Corrosion behaviour of X60 steel in the presence of sulphate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) in seawater

被引:17
作者
Kalajahi, Sara Taghavi [1 ]
Rasekh, Behnam [2 ]
Yazdian, Fatemeh [3 ]
Neshati, Jaber [4 ]
Taghavi, Lobat [1 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Nat Resources & Environm, Tehran, Iran
[2] Res Inst Petr Ind RIPI, Environm & Biotechnol Res Div, West Blvd,Azadi Sport Complex,POB 14665-137, Tehran, Iran
[3] Univ Tehran, Fac New Sci & Technol, Dept Life Sci Engn, Tehran, Iran
[4] Res Inst Petr Ind RIPI, Energy & Environm Res Ctr, Tehran, Iran
基金
美国国家科学基金会;
关键词
Microbiological influenced corrosion (MIC); electrochemical impedance spectroscopy (EIS); Tafel polarisation; X60; steel; MICROBIOLOGICALLY INFLUENCED CORROSION; STRATEGIES; BIOFILM;
D O I
10.1080/1478422X.2021.1919840
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the corrosion behavior of X60 was investigated in the presence of a mixed culture of sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) via weight loss, electrochemical impedance spectroscopy (EIS), and Tafel polarization techniques. Moreover, field emission scanning electron microscope (FESEM) images and X-ray diffraction spectrometry (XRD) were used to study the morphological changes of the surface of X60 and the composition of corrosion products after exposing X60 to the abiotic and biotic systems. EIS result confirmed the occurrence of microbial corrosion in the presence of SRB and IRB. In the exposed coupon to the mixture of bacteria, the result illustrated that the existence of IRB promoted the SRB growth, so corrosion rate increased compared to the exposed coupon to SRB and IRB, respectively. The mixture of SRB and IRB showed a synergistic effect and enhanced the pitting corrosion on the surface of X60.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 39 条
[1]   The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel [J].
AlAbbas, Faisal M. ;
Bhola, Shaily M. ;
Spear, John R. ;
Olson, David L. ;
Mishra, Brajendra .
ENGINEERING FAILURE ANALYSIS, 2013, 33 :222-235
[2]   Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J].
AlAbbas, Faisal M. ;
Williamson, Charles ;
Bhola, Shaily M. ;
Spear, John R. ;
Olson, David L. ;
Mishra, Brajendra ;
Kakpovbia, Anthony E. .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2013, 78 :34-42
[3]   Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J].
Chen, Xu ;
Wang, Guanfu ;
Gao, Fengjiao ;
Wang, Yanliang ;
He, Chuan .
CORROSION SCIENCE, 2015, 101 :1-11
[4]  
Gu T., 2012, J MICROB BIOCH TECHN, V04, P3, DOI [10.4172/1948-5948.1000e107, DOI 10.4172/1948-5948.1000E107]
[5]   Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization [J].
Guan, Fang ;
Zhai, Xiaofan ;
Duan, Jizhou ;
Zhang, Meixia ;
Hou, Baorong .
PLOS ONE, 2016, 11 (09)
[6]   Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades [J].
Huttunen-Saarivirta, E. ;
Rajala, P. ;
Marja-aho, M. ;
Maukonen, J. ;
Sohlberg, E. ;
Carpen, L. .
BIOELECTROCHEMISTRY, 2018, 120 :27-42
[7]  
Iskandar BS, 2012, World Appl Sci J, V17, P524
[8]   Impact of sulphate-reducing bacteria on the performance of engineering materials [J].
Javaherdashti, Reza .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 91 (06) :1507-1517
[9]   Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J].
Jia, Ru ;
Unsal, Tuba ;
Xu, Dake ;
Lekbach, Yassir ;
Gu, Tingyue .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2019, 137 :42-58
[10]   Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid [J].
Kalajahi, Sara Taghavi ;
Rasekh, Behnam ;
Yazdian, Fateme ;
Neshati, Jaber ;
Taghavi, Lobat .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (32) :40537-40551