Magnetic plasma confinement for laser ion source

被引:25
|
作者
Okamura, M. [1 ,2 ]
Adeyemi, A. [3 ]
Kanesue, T. [2 ,4 ]
Tamura, J. [2 ,5 ]
Kondo, K. [2 ,5 ]
Dabrowski, R. [1 ]
机构
[1] Brookhaven Natl Lab, Upton, NY 11973 USA
[2] RIKEN, Wako, Saitama 3510198, Japan
[3] Holyoke Community Coll, Holyoke, MA 01040 USA
[4] Kyushu Univ, Fukuoka 8190395, Japan
[5] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2010年 / 81卷 / 02期
关键词
ion sources; plasma confinement; plasma production by laser; plasma sources; solenoids;
D O I
10.1063/1.3267312
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 mu s of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Magnetic Confinement Effect on Femtosecond Laser-induced Copper Plasma
    Xu Dong-hua
    Song Chao
    Zhao Shang-yong
    Gao Xun
    Lin Jing-quan
    ACTA PHOTONICA SINICA, 2018, 47 (08)
  • [32] Mirror-like plasma confinement for a uniform large negative ion source
    Simonin, A.
    Christin, L.
    De-Esch, H. P. L.
    Futtersack, R.
    Garibaldi, P.
    Villecroze, F.
    NUCLEAR FUSION, 2012, 52 (06)
  • [33] Behavior of Laser Ablation Plasma During Transport in Multicusp Magnetic Field Using Different Targets for Laser Ion Source
    Takahashi, Kazumasa
    Uchino, Takumi
    Ikegami, Keisuke
    Sasaki, Toru
    Kikuchi, Takahashi
    Harada, Nob.
    SPECIAL ISSUE OF FOR THE FIFTH INTERNATIONAL SYMPOSIUM ON INNOVATIVE NUCLEAR ENERGY SYSTEMS, 2017, 131 : 354 - 358
  • [34] DEVELOPMENT OF A HIGH PROTON YIELD PLASMA SOURCE WITH MULTIPOLE CONFINEMENT AND A MAGNETIC FILTER
    HOLMES, AJT
    GREEN, TS
    NEWMAN, AF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1987, 58 (08): : 1369 - 1381
  • [35] High-Uniformity Inductively Coupled Plasma Source With Magnetic Multicusp Confinement
    Biloiu, Costel
    Olson, J. C.
    Scheuer, J. T.
    Renau, A.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2456 - 2457
  • [36] Investigation of the Tail of a Fe Plasma Plume Passing Through Solenoidal Magnetic Field for a Laser Ion Source
    Ikeda, Shunsuke
    Horioka, Kazuhiko
    Okamura, Masahiro
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (10) : 3456 - 3460
  • [37] CONFINEMENT OF PLASMA IN MAGNETIC MIRRORS
    BALACEANU, M
    BRANDUS, L
    POPOVICI, C
    REVUE ROUMAINE DE PHYSIQUE, 1976, 21 (02): : 147 - 151
  • [38] Effect of permanent magnets on plasma confinement and ion beam properties in a double layer helicon plasma source
    Varberg, Erik
    Fredriksen, Ashild
    JOURNAL OF PLASMA PHYSICS, 2019, 85 (03)
  • [39] PLASMA CONFINEMENT BY SURFACE MAGNETIC FIELDS IN AN INERT GAS ION THRUSTER.
    Hamatani, Chinami
    Arakawa, Yoshihiro
    Journal of the Faculty of Engineering, University of Tokyo, Series B, 1986, 38 (04): : 79 - 98
  • [40] LASER PRODUCED PLASMA AS AN ION SOURCE FOR HEAVY ION INERTIAL FUSION.
    Barabash, L.Z.
    Koshkarev, D.G.
    Lapitskii, Yu.I.
    Latyshev, S.V.
    Shumshurov, A.V.
    Bykovskii, Yu.A.
    Golvbev, A.A.
    Kosyrev, Yu.P.
    Krechet, K.I.
    Haydarov, R.T.
    Sharkov, B.Yu.
    Laser and Particle Beams, 1984, 2 (pt 1) : 49 - 59