Magnetic plasma confinement for laser ion source

被引:25
|
作者
Okamura, M. [1 ,2 ]
Adeyemi, A. [3 ]
Kanesue, T. [2 ,4 ]
Tamura, J. [2 ,5 ]
Kondo, K. [2 ,5 ]
Dabrowski, R. [1 ]
机构
[1] Brookhaven Natl Lab, Upton, NY 11973 USA
[2] RIKEN, Wako, Saitama 3510198, Japan
[3] Holyoke Community Coll, Holyoke, MA 01040 USA
[4] Kyushu Univ, Fukuoka 8190395, Japan
[5] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2010年 / 81卷 / 02期
关键词
ion sources; plasma confinement; plasma production by laser; plasma sources; solenoids;
D O I
10.1063/1.3267312
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 mu s of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] ION CONFINEMENT IN LASER-INITIATED PLASMA
    HIRSHFIELD, JL
    AVIVI, P
    BERNSTEIN, IB
    MUSSETTO, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (02): : 167 - 167
  • [2] Behavior of moving plasma in solenoidal magnetic field in a laser ion source
    Ikeda, S.
    Takahashi, K.
    Okamura, M.
    Horioka, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [3] Laser plasma as an effective ion source
    Maska, K
    Krasa, J
    Laska, L
    Pfeifer, M
    Rohlena, K
    Kralikova, B
    Skala, J
    Woryna, E
    Farny, J
    Parys, P
    Wolowski, J
    Mroz, W
    Haseroth, H
    Sharkov, B
    Korschinek, G
    HIGH-POWER LASER ABLATION, PTS 1-2, 1998, 3343 : 254 - 264
  • [4] Ablation plasma transport using multicusp magnetic field for laser ion source
    Takahashi, K.
    Umezawa, M.
    Uchino, T.
    Ikegami, K.
    Sasaki, T.
    Kikuchi, T.
    Harada, N.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [5] Lateral confinement of laser ablation plasma in magnetic field
    Pagano, C.
    Lunney, J. G.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (30)
  • [6] MAGNETIC CONFINEMENT OF LASER-PRODUCED PLASMA IN LITE
    POLK, DH
    STUFFLEBEAM, JH
    ARD, WB
    HAUGHT, AF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1163 - 1163
  • [7] Enhanced confinement in electron cyclotron resonance ion source plasma
    Schachter, L.
    Stiebing, K. E.
    Dobrescu, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (02):
  • [8] ION-SOURCE OPERATION WITH DIFFERENT MAGNETIC CONFINEMENT GEOMETRIES
    LEUNG, KN
    EHLERS, KW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1984, 55 (03): : 342 - 346
  • [9] A SOFT-X-RAY SOURCE BASED ON THE MAGNETIC CONFINEMENT AND COMPRESSION OF A LASER-PRODUCED PLASMA
    CRAWFORD, EA
    HOFFMAN, AL
    MILROY, RD
    QUIMBY, DC
    AIP CONFERENCE PROCEEDINGS, 1982, (90) : 236 - 242
  • [10] Critical Condition for Plasma Confinement in the Source of a Magnetic Nozzle Flow
    Little, Justin M.
    Choueiri, Edgar Y.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (01) : 277 - 286