Microarray sample clustering using independent component analysis

被引:0
|
作者
Zhu, Lei [1 ]
Tang, Chun [2 ]
机构
[1] Armstrong Atlantic State Univ, Dept Informat Technol, 11935 Abercorn St, Savannah, GA 31419 USA
[2] Yale Univ, Med Informat Ctr, New Haven, CT 06511 USA
来源
PROCEEDINGS OF THE 2006 IEEE/SMC INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING | 2006年
关键词
bioinformatics; microarray analysis; sample clustering; independent component analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
DNA microarray technology has been used to measure expression levels for thousands of genes in a single experiment, across different samples. These samples can be clustered into homogeneous groups corresponding to some particular macroscopic phenotypes. In sample clustering problems, it is common to come up against the challenges of high dimensional data due to small sample volume and high feature (gene) dimensionality. Therefore, it is necessary to conduct dimension reduction on the gene dimension and identify informative genes prior to the clustering on the samples. This paper introduces a method for informative genes selection by utilizing independent component analysis (ICA). The performance of the proposed method on various microarray datasets is reported to illustrate its effectiveness.
引用
收藏
页码:112 / +
页数:2
相关论文
共 50 条
  • [21] DIFFUSION MAP FOR CLUSTERING FMRI SPATIAL MAPS EXTRACTED BY INDEPENDENT COMPONENT ANALYSIS
    Sipola, Tuomo
    Cong, Fengyu
    Ristaniemi, Tapani
    Alluri, Vinoo
    Toiviainen, Petri
    Brattico, Elvira
    Nandi, Asoke K.
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [22] Spectral clustering independent component analysis for tissue classification from brain MRI
    Sindhumol, S.
    Kumar, Anil
    Balakrishnan, Kannan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2013, 8 (06) : 667 - 674
  • [23] Vehicle's vibration analysis using independent component analysis
    Nakamura H.
    Nakano K.
    Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76 (765): : 1163 - 1170
  • [24] Study DNA microarray gene expression data of Alzheimer's disease by independent component analysis
    Kong, Wei
    Mou, Xiaoyang
    Bin Yang
    2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 44 - +
  • [25] Microarray data classification based on ensemble independent component selection
    Liu, Kun-Hong
    Li, Bo
    Wu, Qing-Qiang
    Zhang, Jun
    Du, Ji-Xiang
    Liu, Guo-Yan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (11) : 953 - 960
  • [26] Imaging brain dynamics using independent component analysis
    Jung, TP
    Makeig, S
    McKeown, MJ
    Bell, AJ
    Lee, TW
    Sejnowski, TJ
    PROCEEDINGS OF THE IEEE, 2001, 89 (07) : 1107 - 1122
  • [27] Electrogastrogram extraction using independent component analysis with references
    Cheng Peng
    Xiang Qian
    Datian Ye
    Neural Computing and Applications, 2007, 16 : 581 - 587
  • [28] Identifying Microgrid Disturbances Using Independent Component Analysis
    Ray, Prakash K.
    Krishnan, Ashok
    Chaudhari, Kalpesh
    Khan, Md Shafquat Ullah
    Eddy, Foo Y. S.
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3627 - 3633
  • [29] Harmonic contribution evaluation using independent component analysis
    Liana, Suo
    Ito, Daisuke
    Takayama, Satoshi
    Ishigame, Atsushi
    Kitagawa, Masahiro
    Katayama, Kousaku
    Nakatani, Hideyuki
    Takeuchi, Masayasu
    IEEJ Transactions on Power and Energy, 2012, 132 (05) : 521 - 522
  • [30] A Bayesian inverse solution using independent component analysis
    Puuronen, Jouni
    Hyvarinen, Aapo
    NEURAL NETWORKS, 2014, 50 : 47 - 59