Compact breathers in a quasi-linear Klein-Gordon equation

被引:7
|
作者
Rosenau, Philip [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/j.physleta.2010.01.065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quasi-linear complex Klein-Gordon equation -Z(tt) + del(vertical bar del Z vertical bar(2)del Z) = P'(vertical bar Z vertical bar)Z/vertical bar Z vertical bar and present two classes of strictly localized compact stationary breathers. In the first class breathers vibrate at an anharmonic rate but the site potential has to be quartic. In the second class a more general, Q-ball type, site potentials are admitted but vibrations are harmonic. Notably, unlike the Q-balls supporting models, if the chosen potential has a top then multi-nodal modes cannot accumulate there: only a finite number of multi-nodal modes is possible, each constrained by its own spectrum of harmonic vibrations. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1663 / 1667
页数:5
相关论文
共 50 条
  • [31] DEVELOPMENT OF THE KLEIN-GORDON EQUATION
    CARAZZA, B
    GUIDETTI, GP
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1980, 22 (04) : 373 - 383
  • [32] LOGARITHMIC KLEIN-GORDON EQUATION
    Gorka, Przemyslaw
    ACTA PHYSICA POLONICA B, 2009, 40 (01): : 59 - 66
  • [33] A search on the Klein-Gordon equation
    Gonul, B.
    CHINESE PHYSICS LETTERS, 2006, 23 (10) : 2640 - 2643
  • [34] Numerical computation of travelling breathers in Klein-Gordon chains
    Sire, Y
    James, G
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 204 (1-2) : 15 - 40
  • [35] Quantum Breathers in Lithium Tantalate in Klein-Gordon Lattice
    Biswas, Arindam
    Choudhury, K.
    Bandyopadhyay, A. K.
    Bhattacharjee, A. K.
    Mandal, D.
    ADVANCED NANOMATERIALS AND NANOTECHNOLOGY, 2013, 143 : 545 - 550
  • [36] Moving discrete breathers in a Klein-Gordon chain with an impurity
    Cuevas, J
    Palmero, F
    Archilla, JFR
    Romero, FR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (49): : 10519 - 10530
  • [37] Revisiting multi-breathers in the discrete Klein-Gordon equation: a spatial dynamics approach
    Parker, Ross
    Cuevas-Maraver, Jesus
    Kevrekidis, P. G.
    Aceves, Alejandro
    NONLINEARITY, 2022, 35 (11) : 5714 - 5748
  • [38] Energy decay for the linear Klein-Gordon equation and boundary control
    Nunes, R. S. O.
    Bastos, W. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) : 934 - 944
  • [39] Relativistic flow and non-linear Klein-Gordon equation
    Carbonaro, P.
    EPL, 2012, 100 (06)
  • [40] Reducibility for a fast-driven linear Klein-Gordon equation
    Franzoi, L.
    Maspero, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) : 1407 - 1439