Compact breathers in a quasi-linear Klein-Gordon equation

被引:7
|
作者
Rosenau, Philip [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/j.physleta.2010.01.065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quasi-linear complex Klein-Gordon equation -Z(tt) + del(vertical bar del Z vertical bar(2)del Z) = P'(vertical bar Z vertical bar)Z/vertical bar Z vertical bar and present two classes of strictly localized compact stationary breathers. In the first class breathers vibrate at an anharmonic rate but the site potential has to be quartic. In the second class a more general, Q-ball type, site potentials are admitted but vibrations are harmonic. Notably, unlike the Q-balls supporting models, if the chosen potential has a top then multi-nodal modes cannot accumulate there: only a finite number of multi-nodal modes is possible, each constrained by its own spectrum of harmonic vibrations. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1663 / 1667
页数:5
相关论文
共 50 条
  • [1] A quadratic quasi-linear Klein-Gordon equation in two space dimensions
    Hayashi, Nakao
    Naumkin, Pavel I.
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (02) : 253 - 280
  • [2] A QUASI-LINEAR BIRKHOFF NORMAL FORMS METHOD. APPLICATION TO THE QUASI-LINEAR KLEIN-GORDON EQUATION ON S
    Delort, J. -M.
    ASTERISQUE, 2012, (341) : 1 - +
  • [3] Stability of Breathers for a Periodic Klein-Gordon Equation
    Chirilus-Bruckner, Martina
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    ENTROPY, 2024, 26 (09)
  • [5] On a strictly compact discrete breathers in a Klein-Gordon model
    Rosenau, Philip
    Zilburg, Alon
    PHYSICS LETTERS A, 2015, 379 (43-44) : 2811 - 2816
  • [6] Long Time Dynamics of Quasi-linear Hamiltonian Klein-Gordon Equations on the Circle
    Feola, Roberto
    Giuliani, Filippo
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [7] COMPACT DIFFERENCE SCHEMES FOR KLEIN-GORDON EQUATION
    Matus, Piotr P.
    Hoang T K Anh
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (05): : 526 - 533
  • [8] A quadratic quasi-linear Klein–Gordon equation in two space dimensions
    Nakao Hayashi
    Pavel I. Naumkin
    Journal of Evolution Equations, 2013, 13 : 253 - 280
  • [9] Travelling breathers in Klein-Gordon chains
    Sire, Y
    James, G
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) : 661 - 666
  • [10] Numerical Solution of A Linear Klein-Gordon Equation
    Kasron, Noraini
    Nasir, Mohd Agos Salim
    Yasiran, Siti Salmah
    Othman, Khairil Iskandar
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2013, : 74 - 78