Palindrome complexity

被引:80
作者
Allouche, JP
Baake, M
Cassaigne, J
Damanik, D
机构
[1] Univ Paris 11, CNRS, LRI, F-91405 Orsay, France
[2] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
[3] CNRS, IML, F-13288 Marseille 9, France
[4] CALTECH, Dept Math 25337, Pasadena, CA 91125 USA
关键词
D O I
10.1016/S0304-3975(01)00212-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the palindrome complexity of infinite sequences on finite alphabets, i.e., the number of palindromic factors (blocks) of given length occurring in a given sequence. We survey the known results and obtain new results for some sequences, in particular for Rote sequences and for fixed points of primitive morphisms of constant length belonging to "class P" of Hof-Knill-Simon. We also give an upper bound for the palindrome complexity of a sequence in terms of its (block-)complexity. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:9 / 31
页数:23
相关论文
共 49 条
[31]   Chacon transformations: Combinatorics, geometric structure, link with systems of complexity 2n+1 [J].
Ferenczi, S .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1995, 123 (02) :271-292
[32]   Complexity for finite factors of infinite sequences [J].
Ferenczi, S ;
Kása, Z .
THEORETICAL COMPUTER SCIENCE, 1999, 218 (01) :177-195
[33]   UNIQUENESS THEOREMS FOR PERIODIC FUNCTIONS [J].
FINE, NJ ;
WILF, HS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :109-&
[34]  
FRANCE MM, 1981, B SOC MATH FR, V109, P207
[35]   SINGULAR CONTINUOUS-SPECTRUM FOR PALINDROMIC SCHRODINGER-OPERATORS [J].
HOF, A ;
KNILL, O ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :149-159
[36]   Episturmian words and episturmian morphisms [J].
Justin, J ;
Pirillo, G .
THEORETICAL COMPUTER SCIENCE, 2002, 276 (1-2) :281-313
[37]  
Kolakoski W., 1966, AM MATH MONTHLY, V73, P681, DOI 10.2307/2314839
[38]  
LADOUCEUR A, 1999, MEMOIRE MAITRISE
[39]   CHARACTERIZATION OF 2-DISTANCE SEQUENCES [J].
LUNNON, WF ;
PLEASANTS, PAB .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1992, 53 :198-218
[40]  
Lyndon RC., 1962, MICH MATH J, V9, P289, DOI DOI 10.1307/MMJ/1028998773