EXISTENCE OF THREE NONTRIVIAL SOLUTIONS FOR A CLASS OF FOURTH-ORDER ELLIPTIC EQUATIONS

被引:2
作者
Li, Chun [1 ]
Agarwal, Ravi P. [2 ,3 ]
Ou, Zeng-Qi [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] Florida Inst Technol, Math, 150 West Univ Blvd, Melbourne, FL 32901 USA
基金
中国国家自然科学基金;
关键词
Fourth-order elliptic equations; linking theorem; (del)-theorem; critical points; MULTIPLE SOLUTIONS; SCHRODINGER-EQUATIONS; CRITICAL-POINTS; R-N; THEOREMS; LINKING;
D O I
10.12775/TMNA.2018.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of three nontrivial solutions is established for a class of fourth-order elliptic equations. Our technical approach is based on Linking Theorem and (del)-Theorem.
引用
收藏
页码:331 / 344
页数:14
相关论文
共 25 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]  
Bisci GM, 2017, DIFFER INTEGRAL EQU, V30, P641
[4]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578
[5]   Existence and Multiplicity of Nontrivial Solutions for a Class of Fourth-Order Elliptic Equations [J].
Li, Chun ;
Ou, Zeng-Qi ;
Tang, Chun-Lei .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[6]   Multiplicity of solutions for semilinear variational inequalities via linking and del-theorems [J].
Magrone, P. ;
Mugnai, D. ;
Servadei, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :191-225
[7]  
Marino A., 1997, ANN SCUOLA NORM SU S, V25, P661
[8]  
MARINO A, 2001, TOPOL METHOD NONL AN, V17, P213
[9]  
Marino A., 2002, TOPOL METHOD NONL AN, V19, P29
[10]  
Marino A., 2002, TOPOL METHOD NONL AN, V20, P43