Loop Heisenberg-Virasoro Lie conformal algebra

被引:17
作者
Fan, Guangzhe [1 ]
Su, Yucai [1 ]
Wu, Henan [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
关键词
COHOMOLOGY;
D O I
10.1063/1.4903990
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let HV be the loop Heisenberg-Virasoro Lie algebra over C with basis {L-alpha,L-i, H-beta,H-j vertical bar alpha, beta, i, j is an element of Z} and brackets [L-alpha,L-i, L-beta,L-j] = (alpha - beta) L-alpha+beta,L-i+j, [L-alpha,L-i, H-beta,H-j] = -beta H-alpha+beta,H-i+j, [H-alpha,H-i, H-beta,H-j] = 0. In this paper, a formal distribution Lie algebra of HV is constructed. Then, the associated conformal algebra CHV is studied, where CHV has a C[partial derivative]-basis {L-i, H-i vertical bar i is an element of Z} with lambda-brackets [L-i (lambda) L-j] = (partial derivative + 2 lambda) Li+j, [L-i lambda H-j] = (partial derivative + lambda)Hi+j, [H-i lambda L-j] = lambda Li+j, and [H-i lambda H-j] = 0. In particular, the conformal derivations of CHV are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CHV are classified. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 15 条
[1]   MODULI SPACES OF CURVES AND REPRESENTATION-THEORY [J].
ARBARELLO, E ;
DECONCINI, C ;
KAC, VG ;
PROCESI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (01) :1-36
[2]   Cohomology of conformal algebras [J].
Bakalov, B ;
Kac, VG ;
Voronov, AA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) :561-598
[3]  
Bilig Y, 2003, CAN MATH BULL, V46, P529
[4]  
Cheng S.-J., 1997, Asian J. Math, V1, P181, DOI DOI 10.4310/AJM.1997.v1.n1.a6
[5]  
DAndrea A., 1998, Selecta Math.-New Ser., V4, P377, DOI DOI 10.1007/s000290050036
[6]  
Gao M., ARXIV12106160
[7]   Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra [J].
Guo, Xiangqian ;
Lu, Rencai ;
Zhao, Kaiming .
FORUM MATHEMATICUM, 2011, 23 (05) :1029-1052
[8]  
Kac V., 1997, BRISB C MATH PHYS
[9]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[10]  
Kac V. G., 1996, AM MATH SOC