A New Self-Healing Triboelectric Nanogenerator Based on Polyurethane Coating and Its Application for Self-Powered Cathodic Protection

被引:57
|
作者
Sun, Weixiang [1 ]
Luo, Ning [2 ,3 ]
Liu, Yubo [3 ]
Li, Hao [1 ]
Wang, Daoai [2 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266590, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[3] Qingdao Ctr Resource Chem & New Mat, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
self-healing; triboelectric nanogenerator; silicone-modified polyurethane; polyvinylidene fluoride nanofiber; cathodic protection; ENERGY; POLYMERS;
D O I
10.1021/acsami.2c00881
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With the increasing demand for carbon neutrality, the development of renewable and recycle green energy has attracted wide attention from researchers. A novel self-healing triboelectric nanogenerator (TENG) was constructed by applying a linear silicone-modified polyurethane (PU) coating as a triboelectric layer, which was obtained by reacting hydroxypropyl silicone oil and hexamethylene diisocyanate under the catalysis of Sn. The linear self-healing coating as the friction electrode could effectively alleviate the damages of TENG devices during long-term energy harvesting. When the triboelectric layer of the TENG device shows abrasion, the broken silicone-modified polyurethane polymer chains would gradually be cross-linked again through hydrogen bonding to achieve a self-healing effect. The entire self- healing process of the friction coating could be completed in 30 min at room temperature. The PU-based self-healing TENG exhibits an evident and stable output performance with a short-circuit current of 31.9 mu A and output voltage of 517.5 V after multiple cutting-healing cycles, which could light 480 commercial LEDs. Besides, a self-powered cathodic protection system supplied by the self-healing TENG was constructed, which could transfer negative triboelectric charges to the protected metal surface to achieve an anti-corrosion effect by harvesting mechanical energy. Due to the self-healing characteristics of the TENG device as the power supply part, this intelligent system possesses great application potential in the long-term corrosion protection of multiple metal application industries, such as the marine industry.
引用
收藏
页码:10498 / 10507
页数:10
相关论文
共 50 条
  • [41] An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector
    Zheng, Youbin
    Cheng, Li
    Yuan, Miaomiao
    Wang, Zhe
    Zhang, Lu
    Qin, Yong
    Jing, Tao
    NANOSCALE, 2014, 6 (14) : 7842 - 7846
  • [42] Application of triboelectric nanogenerator in self-powered motion detection devices: A review
    Jiang, Hongyuan
    Lv, Xin
    Wang, Kai
    APL MATERIALS, 2024, 12 (07):
  • [43] A Fully Self-Healing Piezoelectric Nanogenerator for Self-Powered Pressure Sensing Electronic Skin
    Yang, Maosen
    Liu, Jinmei
    Liu, Dong
    Jiao, Jingyi
    Cui, Nuanyang
    Liu, Shuhai
    Xu, Qi
    Gu, Long
    Qin, Yong
    RESEARCH, 2021, 2021
  • [44] Economical Polypropylene-Based Triboelectric Nanogenerator for Self-Powered Biomechanical Sensor Application
    Sagade Muktar Ahmed, Rumana Farheen
    Kumbarakkara Gangadharan, Abhishek
    Amini, Sebghatullah
    Belur Mohan, Sankarshan
    Madanahalli Ankanathappa, Sangamesha
    Ankanahalli Shankaregowda, Smitha
    Sannathammegowda, Krishnaveni
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2023, 220 (03):
  • [45] Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator
    Su, Yuanjie
    Chen, Guorui
    Chen, Chunxu
    Gong, Qichen
    Xie, Guangzhong
    Yao, Mingliang
    Tai, Huiling
    Jiang, Yadong
    Chen, Jun
    ADVANCED MATERIALS, 2021, 33 (35)
  • [46] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [47] Self-powered artificial synapses actuated by triboelectric nanogenerator
    Liu, Yaqian
    Zhong, Jianfeng
    Li, Enlong
    Yang, Huihuang
    Wang, Xiumei
    Lai, Dengxiao
    Chen, Huipeng
    Guo, Tailiang
    NANO ENERGY, 2019, 60 : 377 - 384
  • [48] A paper triboelectric nanogenerator for self-powered electronic systems
    Mao, Yanchao
    Zhang, Nan
    Tang, Yingjie
    Wang, Meng
    Chao, Mingju
    Liang, Erjun
    NANOSCALE, 2017, 9 (38) : 14499 - 14505
  • [49] Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator
    Li, Congju
    Yin, Yingying
    Wang, Bin
    Zhou, Tao
    Wang, Jiaona
    Luo, Jianjun
    Tang, Wei
    Cao, Ran
    Yuan, Zuqing
    Li, Nianwu
    Du, Xinyu
    Wang, Chunru
    Zhao, Shuyu
    Liu, Yuebo
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (10) : 10439 - 10445
  • [50] Self-powered environmental monitoring via a triboelectric nanogenerator
    Chang, Austin
    Uy, Cameron
    Xiao, Xiao
    Chen, Jun
    NANO ENERGY, 2022, 98