A novel numerical method for infinite domain potential problems

被引:29
作者
Chen Wen [1 ]
Fu ZhuoJia [1 ]
机构
[1] Hohai Univ, Coll Civil Engn, Dept Engn Mech, Ctr Numer Simulat Software Engn & Sci, Nanjing 210098, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2010年 / 55卷 / 16期
基金
中国国家自然科学基金;
关键词
infinite domain; potential problem; singularity; fundamental solution; singular boundary method; meshless; BOUNDARY-VALUE-PROBLEMS; FUNDAMENTAL-SOLUTIONS; MESHLESS METHOD; EQUATIONS;
D O I
10.1007/s11434-010-3177-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The infinite domain potential problems arise in many branches of scientific and engineering fields, which by now still pose a great challenge to scientific computing community. This study proposes a novel meshless singular boundary method (SBM) to solve infinite domain potential problems. The SBM is mathematically simple, easy-to-program, meshless and integration-free. To guarantee the uniqueness of numerical solutions, this article adds a constant term into the SBM approximate representation. The efficiency and accuracy of the proposed technique are tested to the three infinite domain potential problems.
引用
收藏
页码:1598 / 1603
页数:6
相关论文
共 20 条
  • [1] Brebbia C.A., 1984, BOUNDARY ELEMENT TEC
  • [2] Chen C.S., 2008, METHOD FUNDAMENTAL S
  • [3] Chen CS, 1998, INT J NUMER METH ENG, V43, P1421, DOI 10.1002/(SICI)1097-0207(19981230)43:8<1421::AID-NME476>3.0.CO
  • [4] 2-V
  • [5] Heritage and early history of the boundary element method
    Cheng, AHD
    Cheng, DT
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2005, 29 (03) : 268 - 302
  • [6] A complex variable meshless method for fracture problems
    Cheng, YM
    Li, JH
    [J]. SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2006, 49 (01): : 46 - 59
  • [7] Optimization of perfectly matched layer for Laplace's equation
    Dedek, L
    Dedkova, J
    Valsa, J
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 501 - 504
  • [8] The method of fundamental solutions for elliptic boundary value problems
    Fairweather, G
    Karageorghis, A
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) : 69 - 95
  • [9] Recent advances in the DtN FE Method
    Givoli, D
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1999, 6 (02) : 71 - 116
  • [10] HU HC, 1992, SCI CHINA SER A, V4, P398