Adapted algebras for the Berenstein-Zelevinsky conjecture

被引:8
作者
Caldero, P [1 ]
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
关键词
D O I
10.1007/s00031-003-1121-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected semisimple complex Lie group and fix a maximal unipotent subgroup U- of G. Let q be an indeterminate and let beta* denote the dual canonical basis (cf. [19]) of the quantized algebra C-q [U-] of regular functions oil U-. Following [20], fix a Z(greater than or equal to0)(N)-parametrization of this basis, where N = dim U-. In [2], A. Berenstein and A. Zelevinsky conjecture that two elements of beta* q-commute if and only if they are multiplicative, i.e., their product is an element of beta* up to a power of q. To any reduced decomposition (w) over tilde (0) of the longest element of the Weyl group of g, we associate a subalgebra A((w) over tilde0), called adapted algebra, of Cq[U-] such that (1) A((w) over tilde0) is a q-polynomial algebra which equals C-q[U-] up to localization, (2) A((w) over tilde0) is spanned by a subset of beta*, (3) the Berenstein-Zelevinsky conjecture is true Oil A((w) over tilde0). Then we test the conjecture when one element belongs to the q-center of C-q[U-].
引用
收藏
页码:37 / 50
页数:14
相关论文
共 26 条
[1]   Tensor product multiplicities, canonical bases and totally positive varieties [J].
Berenstein, A ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2001, 143 (01) :77-128
[2]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[3]   Toric degenerations of Schubert varieties [J].
Caldero, P .
TRANSFORMATION GROUPS, 2002, 7 (01) :51-60
[4]   On harmonic elements for semi-simple Lie algebras [J].
Caldero, P .
ADVANCES IN MATHEMATICS, 2002, 166 (01) :73-99
[5]   STUDY OF Q-COMMUTATIONS IN U-Q(N+) ALGEBRA [J].
CALDERO, P .
JOURNAL OF ALGEBRA, 1995, 178 (02) :444-457
[6]   On the q-commutations in Uq(n) at roots of one [J].
Caldero, P .
JOURNAL OF ALGEBRA, 1998, 210 (02) :557-576
[7]   On the Gelfand-Kirillov conjecture for quantum algebras [J].
Caldero, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :943-951
[8]  
CALDERO P, 1993, CR ACAD SCI I-MATH, V316, P327
[9]  
CALDERO P, MATHRT0012165
[10]  
DECONCINI C, 1990, PROGR MATH, V92, P472