ABNORMAL EXTREMALS OF LEFT-INVARIANT SUB-FINSLER QUASIMETRICS ON FOUR-DIMENSIONAL LIE GROUPS

被引:4
作者
Berestovskii, V. N. [1 ]
Zubareva, I. A. [1 ]
机构
[1] Sobolev Inst Math, 4 Koptuyg Ave, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
extremal; left-invariant sub-Finsler quasimetric; Lie algebra; optimal control; polar; Pontryagin maximum principle; (strictly) abnormal extremal; time-optimal problem;
D O I
10.1134/S0037446621030010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the abnormal extremals on four-dimensional connected Lie groups with left-invariant sub-Finsler quasimetric defined by a seminorm on a two-dimensional subspace of the Lie algebra generating the algebra. In terms of the structure constants of a Lie algebra and the Minkowski support function of the unit ball of the seminorm on the two-dimensional subspace of a Lie algebra which defines a quasimetric, we establish a criterion for the strict abnormality of these extremals.
引用
收藏
页码:383 / 399
页数:17
相关论文
共 14 条
[1]   Sub-Riemannian structures on 3D lie groups [J].
Agrachev, A. ;
Barilari, D. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (01) :21-44
[2]  
Agrachev AA., 2004, Control Theory from the Geometric Viewpoint, DOI DOI 10.1007/978-3-662-06404-7
[3]  
[Берестовский Валерий Николаевич Berestovskii Valerii Nikolaevich], 2020, [Чебышевский сборник, Chebyshevskii sbornik], V21, P43
[4]   A metric characterization of Riemannian submersions [J].
Berestovskii, VN ;
Guijarro, L .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) :577-588
[5]  
Berestovskii VN., 1989, SOVIET MATH DOKL, V38, P60
[6]  
Biggs R, 2016, J LIE THEORY, V26, P1001
[7]  
Gorbatsevich V., 1994, LIE GROUPS LIE ALGEB
[8]  
Hartman P., 1964, Ordinary Differential Equations
[9]  
Jacobson N, 1961, LIE ALGEBRAS
[10]  
LIU W, 1996, MEM AM MATH SOC, V564