Arithmetical conditions of orbit sizes of linear groups of odd order

被引:3
|
作者
Yang, Yong [1 ,2 ]
机构
[1] Texas State Univ, Dept Math, 601 Univ Dr, San Marcos, TX 78666 USA
[2] Chongqing Univ Arts & Sci, Key Lab Grp & Graph Theories & Applicat, Chongqing 402160, Peoples R China
关键词
LARGE CHARACTER DEGREES;
D O I
10.1007/s11856-020-1963-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a conjecture of Gluck and a conjecture of Navarro for groups of odd order. We use some innovative techniques to obtain bounds beyond what is known.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Arithmetical conditions of orbit sizes of linear groups of odd order
    Yong Yang
    Israel Journal of Mathematics, 2020, 237 : 1 - 14
  • [2] Orbit sizes and odd order composition factors of finite linear groups
    Li, Jinbao
    Yang, Yong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 171
  • [3] Abelian quotients and orbit sizes of linear groups
    Thomas Michael Keller
    Yong Yang
    ScienceChina(Mathematics), 2020, 63 (08) : 1523 - 1534
  • [4] Abelian quotients and orbit sizes of linear groups
    Thomas Michael Keller
    Yong Yang
    Science China Mathematics, 2020, 63 : 1523 - 1534
  • [5] Abelian quotients and orbit sizes of linear groups
    Keller, Thomas Michael
    Yang, Yong
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (08) : 1523 - 1534
  • [6] Structure of finite groups under certain arithmetical conditions on class sizes
    Beltran, Antonio
    Felipe, Maria Jose
    JOURNAL OF ALGEBRA, 2008, 319 (03) : 897 - 910
  • [7] ABELIAN QUOTIENTS AND ORBIT SIZES OF SOLVABLE LINEAR GROUPS
    Keller, Thomas Michael
    Yang, Yong
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) : 23 - 44
  • [8] Abelian quotients and orbit sizes of solvable linear groups
    Thomas Michael Keller
    Yong Yang
    Israel Journal of Mathematics, 2016, 211 : 23 - 44
  • [9] On the odd order subgroups of solvable linear groups
    Bian, Fang
    Chen, Xiaoyou
    Yang, Yong
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3762 - 3772
  • [10] On the odd order composition factors of finite linear groups
    Betz, Alexander
    Chao-Haft, Max
    Gong, Ting
    Ter-Saakov, Anthony
    Yang, Yong
    JOURNAL OF GROUP THEORY, 2020, 23 (06) : 1057 - 1068