Some signed graphs whose eigenvalues are main

被引:1
作者
Shao, Zhenan [1 ]
Yuan, Xiying [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Signed graph; Adjacency matrix; Main eigenvalue; Switching;
D O I
10.1016/j.amc.2022.127014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. For a subset X of V(G), the switching sigma of G is the signed graph G(sigma) obtained from G by reversing the signs of all edges between X and V(G) \ X. Let A(G(sigma)) be the adjacency matrix of G(sigma). An eigenvalue of A(G(sigma)) is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let S-n,S-k be the graph obtained from the complete graph Kn-r by attaching r pendent edges at some vertex of Kn-r. In this paper we prove that there exists a switching sigma such that all eigenvalues of G(sigma) are main when G is a complete multipartite graph, or G is a harmonic tree, or G is a S-n,S-k. These results partly confirm a conjecture of Akbari et al. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 15 条
  • [1] The main eigenvalues of signed graphs
    Akbari, S.
    Franca, F. A. M.
    Ghasemian, E.
    Javarsineh, M.
    de Lima, L. S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 270 - 280
  • [2] Measurements of the cross section for e+e- → hadrons at center-of-mass energies from 2 to 5 GeV -: art. no. 101802
    Bai, JZ
    Ban, Y
    Bian, JG
    Chen, AD
    Chen, HF
    Chen, HS
    Chen, JC
    Chen, XD
    Chen, YB
    Cheng, BS
    Chi, SP
    Chu, YP
    Choi, JB
    Cui, XZ
    Dai, YS
    Dong, LY
    Du, ZZ
    Dunwoodie, W
    Fu, HY
    Fu, LP
    Gao, CS
    Gu, SD
    Guo, YN
    Guo, ZJ
    Han, SW
    Han, Y
    Harris, FA
    He, J
    He, JT
    He, KL
    He, M
    He, X
    Hong, T
    Heng, YK
    Hu, GY
    Hu, HM
    Hu, QH
    Hu, T
    Huang, GS
    Huang, XP
    Huang, YZ
    Izen, JM
    Ji, XB
    Jiang, CH
    Jin, Y
    Jones, BD
    Kang, JS
    Ke, ZJ
    Kim, HJ
    Kim, SK
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (10) : 5 - 101802
  • [3] Locating eigenvalues of unbalanced unicyclic signed graphs
    Belardo, Francesco
    Brunetti, Maurizio
    Trevisan, Vilmar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 400
  • [4] Berlardo F., 2018, ART DISCRETE APPL MA, p2.10
  • [5] Cvetkovi D, 1978, PUBL I MATH BEOGRAD, V23, P37
  • [6] Esser F., 1980, EUR J COMBIN, V1, P211
  • [7] Harmonic trees
    Grünewald, S
    [J]. APPLIED MATHEMATICS LETTERS, 2002, 15 (08) : 1001 - 1004
  • [8] Unicyclic graphs with exactly two main eigenvalues
    Hou, Yaoping
    Tian, Feng
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1143 - 1147
  • [9] On signed graphs with just two distinct Laplacian eigenvalues
    Hou, Yaoping
    Tang, Zikai
    Wang, Dijian
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 351 : 1 - 7
  • [10] Some results on graphs with exactly two main eigenvalues
    Hou, Yaoping
    Tang, Zikai
    Shiu, Wai Chee
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1274 - 1278