Infrared Small Target Detection Using Local and Nonlocal Spatial Information

被引:42
作者
Li, Wei [1 ,2 ]
Zhao, Mingjing [1 ]
Deng, Xiaoya [1 ]
Li, Lu [1 ]
Li, Liwei [3 ]
Zhang, Wenjuan [3 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China
基金
中国博士后科学基金;
关键词
Infrared (IR) image; IR patch-image (IPI) model; local contrast method; small target detection; MODEL; SALIENCY;
D O I
10.1109/JSTARS.2019.2931566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing infrared (IR) small target detection methods are divided into local priors-based and nonlocal priors-based ones. However, due to heterogeneous structures in IR images, using either local or nonlocal information is always suboptimal, which causes detection performance to be unstable and unrobust. To solve the issue, a comprehensive method, exploiting both local and nonlocal priors, is proposed. The proposed method framework includes dual-window local contrast method (DW-LCM) and multiscale-window IR patch-image (MW-IPI). In the first stage, DW-LCM designs dual-window to compensate for the shortcomings of local priors-based methods, which easily mistake some isolated weak-signal targets. In the second stage, MW-IPI utilizes several small windows with various sizes, which can not only decrease the redundant information generated by sliding windows, but also extract more discriminative information to prevent some pixels in the strong-border edge from being falsely detected. Then, multiplication pooling operation is employed to enhance the target separation and suppress the background clutter simultaneously. Experimental results using five real IR datasets with various scenes reveal the effectiveness and robustness of the proposed method.
引用
收藏
页码:3677 / 3689
页数:13
相关论文
共 33 条
[1]  
[Anonymous], IEEE J SELECTED TOPI
[2]  
[Anonymous], JMBA
[3]   Infrared Ship Target Segmentation Based on Spatial Information Improved FCM [J].
Bai, Xiangzhi ;
Chen, Zhiguo ;
Zhang, Yu ;
Liu, Zhaoying ;
Lu, Yi .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) :3259-3271
[4]   Multiple Feature Analysis for Infrared Small Target Detection [J].
Bi, Yanguang ;
Bai, Xiangzhi ;
Jin, Ting ;
Guo, Sheng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) :1333-1337
[5]   A Local Contrast Method for Small Infrared Target Detection [J].
Chen, C. L. Philip ;
Li, Hong ;
Wei, Yantao ;
Xia, Tian ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :574-581
[6]   INFRARED SMALL TARGET DETECTION ALGORITHM BASED ON FEATURE SALIENCE AND MULTI-FEATURES FUSION [J].
Chen, Zhen-Xue ;
Liu, Cheng-Yun ;
Chang, Fa-Liang .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (02) :299-308
[7]   An infrared small target detection algorithm based on high-speed local contrast method [J].
Cui, Zheng ;
Yang, Jingli ;
Jiang, Shouda ;
Li, Junbao .
INFRARED PHYSICS & TECHNOLOGY, 2016, 76 :474-481
[8]   Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) :3752-3767
[9]   Infrared Small-Target Detection Using Multiscale Gray Difference Weighted Image Entropy [J].
Deng, He ;
Sun, Xianping ;
Liu, Maili ;
Ye, Chaohui ;
Zhou, Xin .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (01) :60-72
[10]   Max-Mean and Max-Median filters for detection of small-targets [J].
Deshpande, SD ;
Er, MH ;
Ronda, V ;
Chan, P .
SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 :74-83