Extreme thermal anisotropy in high-aspect-ratio titanium nitride nanostructures for efficient photothermal heating

被引:20
作者
Ishii, Satoshi [1 ,2 ,3 ]
Higashino, Makoto [4 ]
Goya, Shinya [4 ]
Shkondin, Evgeniy [5 ]
Tanaka, Katsuhisa [4 ]
Nagao, Tadaaki [1 ,6 ]
Takayama, Osamu [7 ]
Murai, Shunsuke [4 ]
机构
[1] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Tsukuba, Fac Pure & Appl Phys, Tsukuba, Ibaraki 3058577, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Saitama 3320012, Japan
[4] Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Nishikyo Ku, Kyoto 6158510, Japan
[5] Tech Univ Denmark, DTU Nanolab, Natl Ctr Micro & Nanofabricat, DK-2800 Lyngby, Denmark
[6] Hokkaido Univ, Grad Sch Sci, Dept Condensed Matter Phys, Sapporo, Hokkaido 0600810, Japan
[7] Tech Univ Denmark, DTU Fotonik Dept Photon Engn, DK-2800 Lyngby, Denmark
关键词
effective medium theory; nanostructure; photothermal effect; surface plasmon; transition metal nitride; RAMAN-SCATTERING; NANOPARTICLES; CONDUCTIVITY;
D O I
10.1515/nanoph-2020-0569
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High optical absorptivity or a large absorption cross-section is necessary to fully utilize the irradiation of light for photothermal heating. Recently, titanium nitride (TiN) nanostructures have been demonstrated to be robust optical absorbers in the optical range owing to their non-radiative decay processes enhanced by broad plasmon resonances. Because the photothermally generated heat dissipates to the surroundings, suppressing heat transfer from TiN nanostructures is crucial for maximizing the photothermal temperature increase. In the current work, compared to the planar TiN film, high-aspect-ratio TiN nanostructures with subwavelength periodicities have been demonstrated to enhance the photothermal temperature increase by a 100-fold using nanotube samples. The reason is attributed to the extremely anisotropic effective thermal conductivities. Our work has revealed that high-aspect-ratio TiN nanostructures are effective in improving photothermal heating, and they can be used in various applications, such as solar heating, chemical reactions, and microfluidics.
引用
收藏
页码:1487 / 1494
页数:8
相关论文
共 39 条
[1]   Tailoring thermal conductivity via three-dimensional porous alumina [J].
Abad, Begona ;
Maiz, Jon ;
Ruiz-Clavijo, Alejandra ;
Caballero-Calero, Olga ;
Martin-Gonzalez, Marisol .
SCIENTIFIC REPORTS, 2016, 6
[2]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[3]   Mapping Heat Origin in Plasmonic Structures [J].
Baffou, Guillaume ;
Girard, Christian ;
Quidant, Romain .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]  
Berne P., 2015, 2015 COMSOL C GREN C
[5]   Anisotropic thermal properties of nanochanneled alumina templates [J].
Borca-Tasciuc, DA ;
Chen, G .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (08)
[6]   Plasmon-assisted chemical vapor deposition [J].
Boyd, David A. ;
Greengard, Leslie ;
Brongersma, Mark ;
El-Naggar, Mohamed Y. ;
Goodwin, David G. .
NANO LETTERS, 2006, 6 (11) :2592-2597
[7]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[8]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
[9]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[10]  
Donner J. S., ACS NANO, V5