Global existence in critical spaces for compressible Navier-Stokes equations

被引:414
作者
Danchin, R [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
D O I
10.1007/s002220000078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate global strong solutions for isentropic compressible fluids with initial data close to a stable equilibrium. We obtain the existence and uniqueness of a solution in a functional setting invariant by the scaling of the associated equations. More precisely, the initial velocity has the same critical regularity index as for the incompressible homogeneous Navier-Stokes equations, and one more derivative is needed for the density. We point out a smoothing effect on the velocity and a L-1-decay on the difference between the density and the constant reference state. The proof lies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.
引用
收藏
页码:579 / 614
页数:36
相关论文
共 20 条
[1]  
[Anonymous], 1980, J MATH KYOTO U
[2]   Quasilinear wave equations and Strichartz estimations [J].
Bahouri, H ;
Chemin, JY .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (06) :1337-1377
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]   REALIZATIONS OF HOMOGENEOUS BESOV-SPACES [J].
BOURDAUD, G .
ARKIV FOR MATEMATIK, 1988, 26 (01) :41-54
[5]  
Cannone M., 1995, ONDELLETES PARAPRODU
[6]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[7]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[8]  
CHEMIN JY, 1996, PREPUBLICATION LAB A, V6
[9]  
Coifman R., 1991, ONDELETTES OPERATEUR, VIII
[10]  
DANCHIN R, 1998, EXISTENCE SOLUTIONS