A matrix approach to polynomials

被引:11
作者
Arponen, T [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
基金
芬兰科学院;
关键词
Bernoulli polynomials; Euler polynomials; Stirling coefficients; power sum;
D O I
10.1016/S0024-3795(02)00421-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a matrix formalism to study univariate polynomials. The structure of this formalism is beautiful enough to be worth seeing on its own, yet we give (another) motivation to this by presenting three new theorems and applying the formalism to give new proofs of some known results. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 6 条
[1]  
CARLITZ L, 1980, REND SEM MAT U PADOV, V62, P309
[2]  
Fuhrmann P.A., 1996, POLYNOMIAL APPROACH
[3]   POLYNOMIAL TRANSLATION GROUPS [J].
KALMAN, D .
MATHEMATICS MAGAZINE, 1983, 56 (01) :23-25
[4]  
KALMAN D, 1999, FIBONACCI QUART, V28, P60
[5]   A NEW APPROACH TO BERNOULLI POLYNOMIALS [J].
LEHMER, DH .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (10) :905-911
[6]  
VERDESTAR L, 1988, STUD APPL MATH, V79, P65