Waist size for cusps in hyperbolic 3-manifolds II

被引:1
作者
Adams, Colin [1 ]
机构
[1] Williams Coll, Dept Math & Stat, Bascom Hall, Williamstown, MA 01267 USA
关键词
Hyperbolic; 3-manifold; Waist size; Cusp; DEHN; GEOMETRY; VOLUME; BOUNDS;
D O I
10.1007/s10711-019-00425-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The waist size of a cusp in an orientable hyperbolic 3-manifold is the length of the shortest nontrivial curve generated by a parabolic isometry in the maximal cusp boundary. Previously, it was shown that the smallest possible waist size, which is 1, is realized only by the cusp in the figure-eight knot complement. In this paper, it is proved that the next two smallest waist sizes are realized uniquely for the cusps in the 5(2) knot complement and the manifold obtained by (2,1)-surgery on the Whitehead link. One application is an improvement on the universal upper bound for the length of an unknotting tunnel in a 2-cusped hyperbolic 3-manifold.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [21] VIRTUAL FIBERS IN HYPERBOLIC 3-MANIFOLDS
    SOMA, T
    TOPOLOGY AND ITS APPLICATIONS, 1991, 41 (03) : 179 - 192
  • [22] On the construction of minimal foliations by hyperbolic surfaces on 3-manifolds
    Alcalde Cuesta, Fernando
    Dal'Bo, Francoise
    Martinez, Matilde
    Verjovsky, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 4127 - 4144
  • [23] The smallest positive eigenvalue of fibered hyperbolic 3-manifolds
    Baik, Hyungryul
    Gekhtman, Ilya
    Hamenstaedt, Ursula
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 120 (05) : 704 - 741
  • [24] Right-angled polyhedra and hyperbolic 3-manifolds
    Vesnin, A. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (02) : 335 - 374
  • [25] Geodesic systems of tunnels in hyperbolic 3-manifolds
    Burton, Stephan D.
    Purcell, Jessica S.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02): : 925 - 952
  • [26] On the prime geodesic theorem for hyperbolic 3-manifolds
    Avdispahic, Muharem
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2160 - 2167
  • [27] Spectral bounds on closed hyperbolic 3-manifolds
    White, Nina
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 837 - 852
  • [28] Hyperbolic 3-manifolds as cyclic branched coverings
    Reni, M
    Zimmermann, B
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (02) : 300 - 313
  • [29] Systoles and Dehn surgery for hyperbolic 3-manifolds
    Lakeland, Grant S.
    Leininger, Christopher J.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (03): : 1441 - 1460
  • [30] Hyperbolic 3-manifolds with k-free fundamental group
    Guzman, Rosemary K.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 173 : 142 - 156