Crossroad Detection Using Artificial Neural Networks

被引:0
|
作者
Hata, Alberto [1 ]
Habermann, Danilo [1 ]
Wolf, Denis [1 ]
Osorio, Fernando [1 ]
机构
[1] Univ Sao Paulo, Mobile Robot Lab LRM ICMC, Sao Paulo, Brazil
来源
ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2013, PT I | 2013年 / 383卷
关键词
Crossroad detection; 3D LIDAR; road surface detection; curb detection and artificial neural networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An autonomous ground vehicle has to be able to execute several tasks such as: environment perception, obstacle detection, and safe navigation. The road shape provides essential information to localization and navigation. It can also be used to identify reference points in the scenario. Crossroads are usual road shapes in urban environments. The detection of these structures is the main focus of this paper. Whereas cameras are sensible to illumination changes, we developed methods that handle LIDAR (Light Detection And Ranging) sensor data to accomplish this task. In the literature, neural networks have not been widely adopted to crossroad detection. One advantage of neural networks is its capability to deal with noisy data, so the detection can be performed even in the presence of other obstacles as cars and pedestrians. Our approach takes advantage of a road detector system that produces curb data and road surface data. Thus we propose a crossroad detector that is performed by an artificial neural network and LIDAR data. We propose two methods (curb detection and road surface detection) for this task. Classification results obtained by different network topologies have been evaluated and the performance compared with ROC graphs. Experimental tests have been carried out to validate the approaches proposed, obtaining good results when compared to other methods in the literature.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 50 条
  • [1] Prediction of crossroad passing using artificial neural networks
    Civilis, Alminas
    2006 SEVENTH INTERNATIONAL BALTIC CONFERENCE ON DATABASES AND INFORMATION SYSTEMS - PROCEEDINGS, 2006, : 229 - 234
  • [2] Impact Detection using Artificial Neural Networks
    Ghajari, M.
    Khodaei, Z. Sharif
    Aliabadi, M. H.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS X, 2012, 488-489 : 767 - 770
  • [3] Epileptic detection using artificial neural networks
    Srinivasan, V
    Eswaran, C
    Sriraam, N
    2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 340 - 343
  • [4] Ridge detection using artificial neural networks
    Weiss, JM
    PROCEEDINGS OF THE ISCA 12TH INTERNATIONAL CONFERENCE INTELLIGENT AND ADAPTIVE SYSTEMS AND SOFTWARE ENGINEERING, 2003, : 132 - 135
  • [5] Heliport Detection Using Artificial Neural Networks
    Baseski, Emre
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2020, 86 (09): : 541 - 546
  • [6] Detection of epileptiform activity using artificial neural networks
    Lesser, RP
    Webber, WRS
    NEOCORTICAL EPILEPSIES, 2000, 84 : 307 - 315
  • [7] Arcing fault detection using artificial neural networks
    Sidhu, TS
    Singh, G
    Sachdev, MS
    NEUROCOMPUTING, 1998, 23 (1-3) : 225 - 241
  • [8] Phishing Attacks Detection by Using Artificial Neural Networks
    Nabet, Majeed Jasim
    George, Loay E.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (03): : 159 - 166
  • [9] An Algorithm for Incident Detection Using Artificial Neural Networks
    Ki, Yong-Kul
    Jeong, Woo-Teak
    Kwon, Hee-Je
    Kim, Mi-Ra
    PROCEEDINGS OF THE 2019 25TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2019, : 162 - 167
  • [10] Fault detection and classification using artificial neural networks
    Heo, Seongmin
    Lee, Jay H.
    IFAC PAPERSONLINE, 2018, 51 (18): : 470 - 475